Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-05-30 20:55:51 UTC
HMDB IDHMDB0000073
Secondary Accession Numbers
  • HMDB00073
  • HMDB0060277
  • HMDB60277
Metabolite Identification
Common NameDopamine
DescriptionDopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061 )
Structure
Data?1676999669
Synonyms
ValueSource
2-(3,4-Dihydroxyphenyl)ethylamineChEBI
3,4-DihydroxyphenethylamineChEBI
3-HydroxytyramineChEBI
4-(2-Aminoethyl)-1,2-benzenediolChEBI
4-(2-Aminoethyl)benzene-1,2-diolChEBI
4-(2-Aminoethyl)catecholChEBI
4-(2-Aminoethyl)pyrocatecholChEBI
DeoxyepinephrineChEBI
DopaminaChEBI
DopaminumChEBI
HydroxytyraminChEBI
MedopaKegg
3,4-DihydroxyphenylethylamineHMDB
4-(2-Aminoethyl)-pyrocatecholHMDB
a-(3,4-Dihydroxyphenyl)-b-aminoethaneHMDB
alpha-(3,4-Dihydroxyphenyl)-beta-aminoethaneHMDB
DopaminHMDB
DopastatHMDB
DophamineHMDB
DynatraHMDB
HydroxytyramineHMDB
IntropinHMDB
OxytyramineHMDB
RevivanHMDB
3,4 DihydroxyphenethylamineHMDB
Hydrochloride, dopamineHMDB
Dopamine hydrochlorideHMDB
Chemical FormulaC8H11NO2
Average Molecular Weight153.1784
Monoisotopic Molecular Weight153.078978601
IUPAC Name4-(2-aminoethyl)benzene-1,2-diol
Traditional Namedopamine
CAS Registry Number62-31-7
SMILES
NCCC1=CC(O)=C(O)C=C1
InChI Identifier
InChI=1S/C8H11NO2/c9-4-3-6-1-2-7(10)8(11)5-6/h1-2,5,10-11H,3-4,9H2
InChI KeyVYFYYTLLBUKUHU-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as catecholamines and derivatives. Catecholamines and derivatives are compounds containing 4-(2-Aminoethyl)pyrocatechol [4-(2-aminoethyl)benzene-1,2-diol] or a derivative thereof formed by substitution.
KingdomOrganic compounds
Super ClassBenzenoids
ClassPhenols
Sub ClassBenzenediols
Direct ParentCatecholamines and derivatives
Alternative Parents
Substituents
  • Catecholamine
  • Phenethylamine
  • 2-arylethylamine
  • 1-hydroxy-4-unsubstituted benzenoid
  • 1-hydroxy-2-unsubstituted benzenoid
  • Aralkylamine
  • Monocyclic benzene moiety
  • Amine
  • Hydrocarbon derivative
  • Primary amine
  • Organopnictogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Primary aliphatic amine
  • Organic oxygen compound
  • Organic nitrogen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point128 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility535 mg/mLNot Available
LogP-0.98HANSCH,C ET AL. (1995)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Baker135.35730932474
[M-H]-MetCCS_train_neg129.51530932474
[M+H]+Baker125.23630932474
[M-H]-Not Available132.4http://allccs.zhulab.cn/database/detail?ID=AllCCS00000284
[M+H]+Not Available137.1http://allccs.zhulab.cn/database/detail?ID=AllCCS00000284
Predicted Molecular Properties
PropertyValueSource
Water Solubility7.43 g/LALOGPS
logP-0.4ALOGPS
logP0.03ChemAxon
logS-1.3ALOGPS
pKa (Strongest Acidic)10.01ChemAxon
pKa (Strongest Basic)9.27ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area66.48 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity43.25 m³·mol⁻¹ChemAxon
Polarizability16.21 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+131.82931661259
DarkChem[M-H]-130.15431661259
AllCCS[M+H]+133.86632859911
AllCCS[M-H]-132.60132859911
DeepCCS[M+H]+134.75930932474
DeepCCS[M-H]-130.96130932474
DeepCCS[M-2H]-168.68930932474
DeepCCS[M+Na]+144.22830932474
AllCCS[M+H]+133.932859911
AllCCS[M+H-H2O]+129.432859911
AllCCS[M+NH4]+138.032859911
AllCCS[M+Na]+139.232859911
AllCCS[M-H]-132.632859911
AllCCS[M+Na-2H]-134.032859911
AllCCS[M+HCOO]-135.632859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
DopamineNCCC1=CC(O)=C(O)C=C12713.4Standard polar33892256
DopamineNCCC1=CC(O)=C(O)C=C11778.9Standard non polar33892256
DopamineNCCC1=CC(O)=C(O)C=C11715.8Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
Dopamine,1TMS,isomer #1C[Si](C)(C)OC1=CC(CCN)=CC=C1O1642.9Semi standard non polar33892256
Dopamine,1TMS,isomer #2C[Si](C)(C)OC1=CC=C(CCN)C=C1O1644.1Semi standard non polar33892256
Dopamine,1TMS,isomer #3C[Si](C)(C)NCCC1=CC=C(O)C(O)=C11877.1Semi standard non polar33892256
Dopamine,2TMS,isomer #1C[Si](C)(C)OC1=CC=C(CCN)C=C1O[Si](C)(C)C1682.2Semi standard non polar33892256
Dopamine,2TMS,isomer #2C[Si](C)(C)NCCC1=CC=C(O)C(O[Si](C)(C)C)=C11773.8Semi standard non polar33892256
Dopamine,2TMS,isomer #3C[Si](C)(C)NCCC1=CC=C(O[Si](C)(C)C)C(O)=C11786.3Semi standard non polar33892256
Dopamine,2TMS,isomer #4C[Si](C)(C)N(CCC1=CC=C(O)C(O)=C1)[Si](C)(C)C2027.2Semi standard non polar33892256
Dopamine,3TMS,isomer #1C[Si](C)(C)NCCC1=CC=C(O[Si](C)(C)C)C(O[Si](C)(C)C)=C11826.6Semi standard non polar33892256
Dopamine,3TMS,isomer #1C[Si](C)(C)NCCC1=CC=C(O[Si](C)(C)C)C(O[Si](C)(C)C)=C11896.2Standard non polar33892256
Dopamine,3TMS,isomer #1C[Si](C)(C)NCCC1=CC=C(O[Si](C)(C)C)C(O[Si](C)(C)C)=C11843.6Standard polar33892256
Dopamine,3TMS,isomer #2C[Si](C)(C)OC1=CC(CCN([Si](C)(C)C)[Si](C)(C)C)=CC=C1O1989.8Semi standard non polar33892256
Dopamine,3TMS,isomer #2C[Si](C)(C)OC1=CC(CCN([Si](C)(C)C)[Si](C)(C)C)=CC=C1O2056.4Standard non polar33892256
Dopamine,3TMS,isomer #2C[Si](C)(C)OC1=CC(CCN([Si](C)(C)C)[Si](C)(C)C)=CC=C1O2037.9Standard polar33892256
Dopamine,3TMS,isomer #3C[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C)[Si](C)(C)C)C=C1O2016.0Semi standard non polar33892256
Dopamine,3TMS,isomer #3C[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C)[Si](C)(C)C)C=C1O2061.3Standard non polar33892256
Dopamine,3TMS,isomer #3C[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C)[Si](C)(C)C)C=C1O1986.9Standard polar33892256
Dopamine,4TMS,isomer #1C[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C)[Si](C)(C)C)C=C1O[Si](C)(C)C2063.8Semi standard non polar33892256
Dopamine,4TMS,isomer #1C[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C)[Si](C)(C)C)C=C1O[Si](C)(C)C2013.3Standard non polar33892256
Dopamine,4TMS,isomer #1C[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C)[Si](C)(C)C)C=C1O[Si](C)(C)C1841.9Standard polar33892256
Dopamine,1TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC1=CC(CCN)=CC=C1O1902.0Semi standard non polar33892256
Dopamine,1TBDMS,isomer #2CC(C)(C)[Si](C)(C)OC1=CC=C(CCN)C=C1O1912.1Semi standard non polar33892256
Dopamine,1TBDMS,isomer #3CC(C)(C)[Si](C)(C)NCCC1=CC=C(O)C(O)=C12096.1Semi standard non polar33892256
Dopamine,2TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC1=CC=C(CCN)C=C1O[Si](C)(C)C(C)(C)C2170.2Semi standard non polar33892256
Dopamine,2TBDMS,isomer #2CC(C)(C)[Si](C)(C)NCCC1=CC=C(O)C(O[Si](C)(C)C(C)(C)C)=C12264.6Semi standard non polar33892256
Dopamine,2TBDMS,isomer #3CC(C)(C)[Si](C)(C)NCCC1=CC=C(O[Si](C)(C)C(C)(C)C)C(O)=C12288.8Semi standard non polar33892256
Dopamine,2TBDMS,isomer #4CC(C)(C)[Si](C)(C)N(CCC1=CC=C(O)C(O)=C1)[Si](C)(C)C(C)(C)C2433.5Semi standard non polar33892256
Dopamine,3TBDMS,isomer #1CC(C)(C)[Si](C)(C)NCCC1=CC=C(O[Si](C)(C)C(C)(C)C)C(O[Si](C)(C)C(C)(C)C)=C12527.0Semi standard non polar33892256
Dopamine,3TBDMS,isomer #1CC(C)(C)[Si](C)(C)NCCC1=CC=C(O[Si](C)(C)C(C)(C)C)C(O[Si](C)(C)C(C)(C)C)=C12520.3Standard non polar33892256
Dopamine,3TBDMS,isomer #1CC(C)(C)[Si](C)(C)NCCC1=CC=C(O[Si](C)(C)C(C)(C)C)C(O[Si](C)(C)C(C)(C)C)=C12254.5Standard polar33892256
Dopamine,3TBDMS,isomer #2CC(C)(C)[Si](C)(C)OC1=CC(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)=CC=C1O2676.6Semi standard non polar33892256
Dopamine,3TBDMS,isomer #2CC(C)(C)[Si](C)(C)OC1=CC(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)=CC=C1O2672.8Standard non polar33892256
Dopamine,3TBDMS,isomer #2CC(C)(C)[Si](C)(C)OC1=CC(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)=CC=C1O2350.4Standard polar33892256
Dopamine,3TBDMS,isomer #3CC(C)(C)[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)C=C1O2701.8Semi standard non polar33892256
Dopamine,3TBDMS,isomer #3CC(C)(C)[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)C=C1O2658.4Standard non polar33892256
Dopamine,3TBDMS,isomer #3CC(C)(C)[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)C=C1O2313.3Standard polar33892256
Dopamine,4TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)C=C1O[Si](C)(C)C(C)(C)C2962.2Semi standard non polar33892256
Dopamine,4TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)C=C1O[Si](C)(C)C(C)(C)C2769.3Standard non polar33892256
Dopamine,4TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC1=CC=C(CCN([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C)C=C1O[Si](C)(C)C(C)(C)C2312.5Standard polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental GC-MSGC-MS Spectrum - Dopamine GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized)splash10-00di-1900000000-117a1a7207245f5377e72014-06-16HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - Dopamine GC-MS (4 TMS)splash10-00di-1900000000-8b7dcae82868308513da2014-06-16HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - Dopamine GC-EI-TOF (Non-derivatized)splash10-00di-1900000000-117a1a7207245f5377e72017-09-12HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - Dopamine GC-MS (Non-derivatized)splash10-00di-1900000000-8b7dcae82868308513da2017-09-12HMDB team, MONA, MassBankView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (Non-derivatized) - 70eV, Positivesplash10-001i-8900000000-752bc8c11fa321b8a7ac2017-07-27Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (2 TMS) - 70eV, Positivesplash10-0089-9280000000-c894c19dda88ac048dd42017-10-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TMS_1_1) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TMS_1_2) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TMS_1_3) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TMS_2_2) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TMS_2_3) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TMS_2_4) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TBDMS_1_1) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TBDMS_1_2) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TBDMS_1_3) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TBDMS_2_1) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TBDMS_2_2) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TBDMS_2_3) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Dopamine GC-MS (TBDMS_2_4) - 70eV, PositiveNot Available2021-11-05Wishart LabView Spectrum
MSMass Spectrum (Electron Ionization)splash10-00e9-8900000000-88acdc978fe4a64e0fc52014-09-20Not AvailableView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine Quattro_QQQ 10V, Positive-QTOF (Annotated)splash10-0uxu-4900000000-ff51177ebcb89b8c956c2012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine Quattro_QQQ 25V, Positive-QTOF (Annotated)splash10-0006-9200000000-a554eb700a06cecb82922012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine Quattro_QQQ 40V, Positive-QTOF (Annotated)splash10-014l-9000000000-db9813e1025f237a549b2012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negative-QTOFsplash10-0udi-0900000000-27e0d71db6d14d79759c2012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negative-QTOFsplash10-0uk9-0900000000-f1cf97c0d0dd509e229e2012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negative-QTOFsplash10-00di-0900000000-aa09a2411e287abe74ed2012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negative-QTOFsplash10-00di-1900000000-97c42b109cab2005373d2012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negative-QTOFsplash10-006x-9700000000-974bd18febffcceea2d62012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positive-QTOFsplash10-0f79-0900000000-099173d4201beca9e5482012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positive-QTOFsplash10-000i-1900000000-9dc09f2661247c9d84b02012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positive-QTOFsplash10-0006-9300000000-8b85fa9aac1ffb4c28732012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positive-QTOFsplash10-0006-9000000000-9ea16d2057010279d4332012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positive-QTOFsplash10-014l-9000000000-32ca2db8fe2b4729ab942012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positive-QTOFsplash10-0f79-0900000000-ff587935c79b4592ffcf2012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positive-QTOFsplash10-000i-1900000000-8a35d8a2241bc18d6c502012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positive-QTOFsplash10-0006-9300000000-356a4b8f268863c7893e2012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positive-QTOFsplash10-0006-9000000000-a88c1004f357858fbc6c2012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positive-QTOFsplash10-014l-9000000000-271874005dcb902885122012-08-31HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Dopamine LC-ESI-QFT , negative-QTOFsplash10-0udi-0900000000-cfa7e1cb9f02ffb4447d2017-09-14HMDB team, MONAView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dopamine 10V, Positive-QTOFsplash10-0udr-0900000000-4e409c6edda911de39fe2017-06-28Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dopamine 20V, Positive-QTOFsplash10-000i-1900000000-90aa0e0866454c2eacc72017-06-28Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dopamine 40V, Positive-QTOFsplash10-1000-9400000000-210fd696305d8cf761642017-06-28Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dopamine 10V, Negative-QTOFsplash10-0udi-0900000000-ff95007680e484d3c57e2017-06-28Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dopamine 20V, Negative-QTOFsplash10-0udi-1900000000-6dcfecebbd98220ef7462017-06-28Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Dopamine 40V, Negative-QTOFsplash10-0kil-6900000000-f476cfd569c441bc84aa2017-06-28Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Experimental 1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, experimental)2012-12-04Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-29Wishart LabView Spectrum
Experimental 2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)2012-12-04Wishart LabView Spectrum

IR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted IR SpectrumIR Ion Spectrum (Quadrupole Ion Trap, ESI+, Adduct: [M+H]+)2022-02-11FELIX labView Spectrum
Predicted IR SpectrumIR Ion Spectrum (Quadrupole Ion Trap, ESI-, Adduct: [M-H]-)2022-02-11FELIX labView Spectrum
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M-H]-)2023-02-03FELIX labView Spectrum
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+)2023-02-03FELIX labView Spectrum
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+)2023-02-03FELIX labView Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Urine
Tissue Locations
  • Adipose Tissue
  • Adrenal Cortex
  • Adrenal Gland
  • Adrenal Medulla
  • Bladder
  • Brain
  • Epidermis
  • Fibroblasts
  • Kidney
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Skeletal Muscle
  • Spleen
  • Testis
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected and Quantified< 0.00013 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.00000-0.00013 uMAdult (>18 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0.002+/-0.002 uMAdult (>18 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0.0059 +/- 0.002 uMElderly (>65 years old)BothNormal details
Cerebrospinal Fluid (CSF)Detected and Quantified0.0045 +/- 0.0026 uMAdult (>18 years old)BothNormal details
FecesDetected but not QuantifiedNot QuantifiedNot SpecifiedNot Specified
Normal
details
UrineDetected and Quantified0.5024 +/- 0.2337 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Normal
    • Analysis of 30 no...
details
UrineDetected and Quantified0.107 (0.043-0.172) umol/mmol creatinineAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.84 umol/mmol creatinineInfant (0-1 year old)Both
Normal
details
UrineDetected and Quantified0.22 +/- 0.07 umol/mmol creatinineAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.44 +/- 0.13 umol/mmol creatinineAdolescent (13-18 years old)BothNormal details
UrineDetected and Quantified0.86 (0.179-1.541) umol/mmol creatinineInfant (0-1 year old)Not Specified
Normal
details
UrineDetected and Quantified2.626 (0.030-5.221) umol/mmol creatinineInfant (0-1 year old)Not Specified
Normal
details
UrineDetected and Quantified0.29 +/- 0.02 umol/mmol creatinineNewborn (0-30 days old)Both
Normal
    • Analysis of 40 NI...
details
UrineDetected and Quantified0.102 (0.0673-0.163) umol/mmol creatinineNot SpecifiedNot SpecifiedNormal
    • Geigy Scientific ...
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.4 (0.2-0.7) umol/mmol creatinineAdult (>18 years old)Both
Normal
details
UrineDetected and Quantified0.13-2.63 umol/mmol creatinineNewborn (0-30 days old)BothNormal details
UrineDetected and Quantified1.31 +/- 0.76 umol/mmol creatinineNewborn (0-30 days old)FemaleNormal details
UrineDetected and Quantified1.1 +/- 0.7 umol/mmol creatinineNewborn (0-30 days old)MaleNormal details
UrineDetected and Quantified0.200-5.220 umol/mmol creatinineChildren (1-13 years old)Female
Normal
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.261-1.697 umol/mmol creatinineAdolescent (13-18 years old)Not SpecifiedNormal details
UrineDetected and Quantified0.10 (0.066-0.16) umol/mmol creatinineAdult (>18 years old)BothNormal
    • Geigy Scientific ...
    • West Cadwell, N.J...
    • Basel, Switzerlan...
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified>0.000650 uMAdult (>18 years old)Not SpecifiedDopamine Beta-Hydroxylase Deficiency details
BloodDetected and Quantified18.0284 +/- 2.4552 uMElderly (>65 years old)BothAlzheimer's disease details
Cerebrospinal Fluid (CSF)Detected and Quantified0.000268 +/- 0.000124 uMAdult (>18 years old)Not SpecifiedCerebral infarction, headache, paresthesia and ununconfirmed suspicion of leucemic infaction or brain metastasis with normal CSF value details
Cerebrospinal Fluid (CSF)Detected and Quantified0.000300 uMAdult (>18 years old)Not SpecifiedCerebral infarction, headache, paresthesia and ununconfirmed suspicion of leucemic infaction or brain metastasis with normal CSF value but renal insufficiency details
Cerebrospinal Fluid (CSF)Detected and Quantified0.000392 uMAdult (>18 years old)Not SpecifiedHaemorrhagic infarction details
Cerebrospinal Fluid (CSF)Detected and Quantified0.000510 uMAdult (>18 years old)Not SpecifiedBacterial meningitis details
Cerebrospinal Fluid (CSF)Detected and Quantified0.000810 uMAdult (>18 years old)Not SpecifiedLeucemic meningiosa details
Cerebrospinal Fluid (CSF)Detected and Quantified0.000287 uMAdult (>18 years old)Not SpecifiedEncephalitis details
Cerebrospinal Fluid (CSF)Detected and Quantified0.34 +/- 0.10 uMAdult (>18 years old)BothAlzheimer's disease details
Cerebrospinal Fluid (CSF)Detected and Quantified0.00002 +/- 0.000006 uMAdult (>18 years old)BothHypothyroidism details
Cerebrospinal Fluid (CSF)Detected and Quantified0.000021 (0.000015-0.000027) uMAdult (>18 years old)BothHypothyroidism details
Cerebrospinal Fluid (CSF)Detected and Quantified0.000078 (0.0000065-0.00015) uMAdult (>18 years old)BothAlzheimer's disease details
UrineDetected and Quantified0.5565 +/- 0.3993 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Eosinophilic esophagitis
    • Analysis of 30 no...
details
UrineDetected and Quantified0.6381 +/- 0.2948 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Gastroesophageal reflux disease
    • Analysis of 30 no...
details
UrineDetected and Quantified0.49 +/- 0.06 umol/mmol creatinineInfant (0-1 year old)BothVitiligo details
UrineDetected and Quantified0.37 +/- 0.03 umol/mmol creatinineChildren (1-13 years old)Both
Vitiligo
details
UrineDetected and Quantified0.4 +/- 0.05 umol/mmol creatinineChildren (1-13 years old)Both
Vitiligo
details
UrineDetected and Quantified2426 +/- 0 nmol/mmol creatinineInfant (0-1 year old)Male
Aromatic L-amino acid decarboxylase deficiency
details
UrineDetected and Quantified3.119 +/- 0 umol/mmol creatinineInfant (0-1 year old)Male
Aromatic L-amino acid decarboxylase deficiency
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothSchizophrenia details
UrineDetected and Quantified0.124 umol/mmol creatinineAdolescent (13-18 years old)FemaleDopamine-serotonin Vesicular Transport Defect details
UrineDetected and Quantified2.7 umol/mmol creatinineChildren (1-13 years old)Female
Aromatic L-amino acid decarboxylase deficiency
details
UrineDetected and Quantified3.91 umol/mmol creatinineInfant (0-1 year old)Female
Aromatic L-amino acid decarboxylase deficiency
details
Associated Disorders and Diseases
Disease References
Dopamine Beta-Hydroxylase Deficiency
  1. GeneReviews: Dopamine Beta-Hydroxylase Deficiency [Link]
Hypothyroidism
  1. Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
Alzheimer's disease
  1. Raskind MA, Peskind ER, Holmes C, Goldstein DS: Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease. Biol Psychiatry. 1999 Sep 15;46(6):756-65. [PubMed:10494443 ]
  2. Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10. [PubMed:17031479 ]
Cerebral infarction
  1. Ratge D, Bauersfeld W, Wisser H: The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm. 1985;62(3-4):267-84. [PubMed:4031843 ]
Bacterial meningitis
  1. Ratge D, Bauersfeld W, Wisser H: The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm. 1985;62(3-4):267-84. [PubMed:4031843 ]
Encephalitis
  1. Ratge D, Bauersfeld W, Wisser H: The relationship of free and conjugated catecholamines in plasma and cerebrospinal fluid in cerebral and meningeal disease. J Neural Transm. 1985;62(3-4):267-84. [PubMed:4031843 ]
Vitiligo
  1. Cucchi ML, Frattini P, Santagostino G, Preda S, Orecchia G: Catecholamines increase in the urine of non-segmental vitiligo especially during its active phase. Pigment Cell Res. 2003 Apr;16(2):111-6. [PubMed:12622787 ]
Aromatic L-amino acid decarboxylase deficiency
  1. Abdenur JE, Abeling N, Specola N, Jorge L, Schenone AB, van Cruchten AC, Chamoles NA: Aromatic l-aminoacid decarboxylase deficiency: unusual neonatal presentation and additional findings in organic acid analysis. Mol Genet Metab. 2006 Jan;87(1):48-53. Epub 2005 Nov 9. [PubMed:16288991 ]
  2. Abeling NG, van Gennip AH, Barth PG, van Cruchten A, Westra M, Wijburg FA: Aromatic L-amino acid decarboxylase deficiency: a new case with a mild clinical presentation and unexpected laboratory findings. J Inherit Metab Dis. 1998 Jun;21(3):240-2. [PubMed:9686366 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Schizophrenia
  1. Fryar-Williams S, Strobel JE: Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis. Biomark Res. 2015 Feb 6;3:3. doi: 10.1186/s40364-015-0028-1. eCollection 2015. [PubMed:25729574 ]
Dopamine-serotonin Vesicular Transport Defect
  1. Rilstone JJ, Alkhater RA, Minassian BA: Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med. 2013 Feb 7;368(6):543-50. doi: 10.1056/NEJMoa1207281. Epub 2013 Jan 30. [PubMed:23363473 ]
Associated OMIM IDs
DrugBank IDDB00988
Phenol Explorer Compound IDNot Available
FooDB IDFDB012163
KNApSAcK IDC00001408
Chemspider ID661
KEGG Compound IDC03758
BioCyc IDDOPAMINE
BiGG ID42467
Wikipedia LinkDopamine
METLIN ID64
PubChem Compound681
PDB IDNot Available
ChEBI ID18243
Food Biomarker OntologyNot Available
VMH IDDOPA
MarkerDB IDMDB00000039
Good Scents IDNot Available
References
Synthesis ReferenceKlaus Schoellkopf, Rudolf Albrecht, Manfred Lehmann, Gertrud Schroeder, "Novel dopamine derivatives, processes for their preparation, and their use as medicinal agents." U.S. Patent US4958026, issued February, 1972.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Raw I, Schmidt BJ, Merzel J: Catecholamines and congenital pain insensitivity. Braz J Med Biol Res. 1984;17(3-4):271-9. [PubMed:6085021 ]
  2. Goldstein DS, Eisenhofer G, Kopin IJ: Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther. 2003 Jun;305(3):800-11. Epub 2003 Mar 20. [PubMed:12649306 ]
  3. Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50. [PubMed:12834252 ]
  4. Raskind MA, Peskind ER, Holmes C, Goldstein DS: Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease. Biol Psychiatry. 1999 Sep 15;46(6):756-65. [PubMed:10494443 ]
  5. Mannelli M, Ianni L, Lazzeri C, Castellani W, Pupilli C, La Villa G, Barletta G, Serio M, Franchi F: In vivo evidence that endogenous dopamine modulates sympathetic activity in man. Hypertension. 1999 Sep;34(3):398-402. [PubMed:10489384 ]
  6. Jiang H, Betancourt L, Smith RG: Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol Endocrinol. 2006 Aug;20(8):1772-85. Epub 2006 Apr 6. [PubMed:16601073 ]
  7. Brody AL, Mandelkern MA, Olmstead RE, Scheibal D, Hahn E, Shiraga S, Zamora-Paja E, Farahi J, Saxena S, London ED, McCracken JT: Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry. 2006 Jul;63(7):808-16. [PubMed:16818870 ]
  8. Bauman A: Unilateral adrenal catecholamine excess. Pheochromocytoma or possible sporadic medullary hyperplasia. Arch Intern Med. 1982 Feb;142(2):377-8. [PubMed:7059264 ]
  9. King BM: The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav. 2006 Feb 28;87(2):221-44. Epub 2006 Jan 18. [PubMed:16412483 ]
  10. Cucchi ML, Frattini P, Santagostino G, Preda S, Orecchia G: Catecholamines increase in the urine of non-segmental vitiligo especially during its active phase. Pigment Cell Res. 2003 Apr;16(2):111-6. [PubMed:12622787 ]
  11. Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
  12. Kobayashi K, Yasuhara T, Agari T, Muraoka K, Kameda M, Ji Yuan W, Hayase H, Matsui T, Miyoshi Y, Shingo T, Date I: Control of dopamine-secretion by Tet-Off system in an in vivo model of parkinsonian rat. Brain Res. 2006 Aug 2;1102(1):1-11. Epub 2006 Jun 27. [PubMed:16806124 ]
  13. Schenarts PJ, Sagraves SG, Bard MR, Toschlog EA, Goettler CE, Newell MA, Rotondo MF: Low-dose dopamine: a physiologically based review. Curr Surg. 2006 May-Jun;63(3):219-25. [PubMed:16757377 ]
  14. Piazza O, Zito G, Valente A, Tufano R: Effects of dopamine infusion on forearm blood flow in critical patients. Med Sci Monit. 2006 Feb;12(2):CR90-3. Epub 2006 Jan 26. [PubMed:16449954 ]
  15. Wang HY, Xiao Y, Han J, Chang XS: Simultaneous determination of dopamine and carvedilol in human serum and urine by first-order derivative fluorometry. Anal Sci. 2005 Nov;21(11):1281-5. [PubMed:16317894 ]
  16. Elchisak MA, Carlson JH: Assay of free and conjugated catecholamines by high-performance liquid chromatography with electrochemical detection. J Chromatogr. 1982 Dec 10;233:79-88. [PubMed:7161364 ]
  17. Eklundh T, Eriksson M, Sjoberg S, Nordin C: Monoamine precursors, transmitters and metabolites in cerebrospinal fluid: a prospective study in healthy male subjects. J Psychiatr Res. 1996 May-Jun;30(3):201-8. [PubMed:8884658 ]
  18. Kopieniak M, Wieczorkiewicz-Plaza A, Maciejewski R: Dopamine activity changes in cerebral cortex in the course of experimental acute pancreatitis. Ann Univ Mariae Curie Sklodowska Med. 2004;59(1):382-6. [PubMed:16146016 ]
  19. Nikolelis DP, Drivelos DA, Simantiraki MG, Koinis S: An optical spot test for the detection of dopamine in human urine using stabilized in air lipid films. Anal Chem. 2004 Apr 15;76(8):2174-80. [PubMed:15080725 ]
  20. Eisenhofer G, Aneman A, Friberg P, Hooper D, Fandriks L, Lonroth H, Hunyady B, Mezey E: Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab. 1997 Nov;82(11):3864-71. [PubMed:9360553 ]
  21. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Bolling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novere N, Malys N, Mazein A, Papin JA, Price ND, Selkov E Sr, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JH, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BO: A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013 May;31(5):419-25. doi: 10.1038/nbt.2488. Epub 2013 Mar 3. [PubMed:23455439 ]
  22. Berridge KC, Robinson TE: What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998 Dec;28(3):309-69. [PubMed:9858756 ]
  23. Giuliano F, Allard J: Dopamine and sexual function. Int J Impot Res. 2001 Aug;13 Suppl 3:S18-28. [PubMed:11477488 ]
  24. Giuliano F, Allard J: Dopamine and male sexual function. Eur Urol. 2001 Dec;40(6):601-8. [PubMed:11805404 ]
  25. Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X: Hyperdopaminergic mutant mice have higher "wanting" but not "liking" for sweet rewards. J Neurosci. 2003 Oct 15;23(28):9395-402. [PubMed:14561867 ]
  26. Barron AB, Maleszka R, Vander Meer RK, Robinson GE: Octopamine modulates honey bee dance behavior. Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1703-7. Epub 2007 Jan 19. [PubMed:17237217 ]
  27. Mezzelani A, Landini M, Facchiano F, Raggi ME, Villa L, Molteni M, De Santis B, Brera C, Caroli AM, Milanesi L, Marabotti A: Environment, dysbiosis, immunity and sex-specific susceptibility: a translational hypothesis for regressive autism pathogenesis. Nutr Neurosci. 2015 May;18(4):145-61. doi: 10.1179/1476830513Y.0000000108. Epub 2014 Jan 21. [PubMed:24621061 ]

Only showing the first 10 proteins. There are 28 proteins in total.

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
This is a copper-containing oxidase that functions in the formation of pigments such as melanins and other polyphenolic compounds. Catalyzes the rate-limiting conversions of tyrosine to DOPA, DOPA to DOPA-quinone and possibly 5,6-dihydroxyindole to indole-5,6 quinone.
Gene Name:
TYR
Uniprot ID:
P14679
Molecular weight:
60392.69
Reactions
Tyramine + Oxygen + NADH + Hydrogen Ion → Dopamine + NAD + Waterdetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine.
Gene Name:
MAOB
Uniprot ID:
P27338
Molecular weight:
58762.475
Reactions
Dopamine + Water + Oxygen → 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxidedetails
References
  1. Bortolato M, Chen K, Shih JC: Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1527-33. doi: 10.1016/j.addr.2008.06.002. Epub 2008 Jul 4. [PubMed:18652859 ]
  2. Kaludercic N, Carpi A, Menabo R, Di Lisa F, Paolocci N: Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011 Jul;1813(7):1323-32. doi: 10.1016/j.bbamcr.2010.09.010. Epub 2010 Sep 24. [PubMed:20869994 ]
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOA preferentially oxidizes biogenic amines such as 5-hydroxytryptamine (5-HT), norepinephrine and epinephrine.
Gene Name:
MAOA
Uniprot ID:
P21397
Molecular weight:
59681.27
Reactions
Dopamine + Water + Oxygen → 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxidedetails
References
  1. Bortolato M, Chen K, Shih JC: Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008 Oct-Nov;60(13-14):1527-33. doi: 10.1016/j.addr.2008.06.002. Epub 2008 Jul 4. [PubMed:18652859 ]
  2. Kaludercic N, Carpi A, Menabo R, Di Lisa F, Paolocci N: Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011 Jul;1813(7):1323-32. doi: 10.1016/j.bbamcr.2010.09.010. Epub 2010 Sep 24. [PubMed:20869994 ]
  3. Volavka J, Bilder R, Nolan K: Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann N Y Acad Sci. 2004 Dec;1036:393-8. [PubMed:15817751 ]
General function:
Involved in monooxygenase activity
Specific function:
Conversion of dopamine to noradrenaline.
Gene Name:
DBH
Uniprot ID:
P09172
Molecular weight:
69064.45
Reactions
Dopamine + Ascorbic acid + Oxygen → Norepinephrine + Dehydroascorbic acid + Waterdetails
Dopamine + Ascorbic acid + Oxygen → Norepinephrine + Dehydroascorbic acid + Waterdetails
References
  1. Goldman JM, Cooper RL, Murr AS: Reproductive functions and hypothalamic catecholamines in response to the soil fumigant metam sodium: adaptations to extended exposures. Neurotoxicol Teratol. 2007 May-Jun;29(3):368-76. Epub 2006 Dec 6. [PubMed:17258889 ]
  2. Arboleda G, Huang TJ, Waters C, Verkhratsky A, Fernyhough P, Gibson RM: Insulin-like growth factor-1-dependent maintenance of neuronal metabolism through the phosphatidylinositol 3-kinase-Akt pathway is inhibited by C2-ceramide in CAD cells. Eur J Neurosci. 2007 May;25(10):3030-8. [PubMed:17561816 ]
  3. Garland EM, Black BK, Harris PA, Robertson D: Dopamine-beta-hydroxylase in postural tachycardia syndrome. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H684-90. [PubMed:17625104 ]
  4. Pyatskowit JW, Prohaska JR: Rodent brain and heart catecholamine levels are altered by different models of copper deficiency. Comp Biochem Physiol C Toxicol Pharmacol. 2007 Mar;145(2):275-81. Epub 2007 Jan 12. [PubMed:17287146 ]
  5. LeBlanc J, Ducharme MB: Plasma dopamine and noradrenaline variations in response to stress. Physiol Behav. 2007 Jun 8;91(2-3):208-11. Epub 2007 Mar 2. [PubMed:17433386 ]
General function:
Involved in magnesium ion binding
Specific function:
Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol.
Gene Name:
COMT
Uniprot ID:
P21964
Molecular weight:
30036.77
Reactions
S-Adenosylmethionine + Dopamine → S-Adenosylhomocysteine + 3-Methoxytyraminedetails
References
  1. Ittiwut R, Listman JB, Ittiwut C, Cubells JF, Weiss RD, Brady K, Oslin D, Farrer LA, Kranzler HR, Gelernter J: Association between polymorphisms in catechol-O-methyltransferase (COMT) and cocaine-induced paranoia in European-American and African-American populations. Am J Med Genet B Neuropsychiatr Genet. 2011 Sep;156B(6):651-60. doi: 10.1002/ajmg.b.31205. Epub 2011 Jun 8. [PubMed:21656904 ]
  2. Boot E, Booij J, Abeling N, Meijer J, da Silva Alves F, Zinkstok J, Baas F, Linszen D, van Amelsvoort T: Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia--relationship with COMT Val(1)(0)(8)/(1)(5)(8)Met polymorphism, gender and symptomatology. J Psychopharmacol. 2011 Jul;25(7):888-95. doi: 10.1177/0269881111400644. Epub 2011 Mar 29. [PubMed:21447540 ]
  3. Volavka J, Bilder R, Nolan K: Catecholamines and aggression: the role of COMT and MAO polymorphisms. Ann N Y Acad Sci. 2004 Dec;1036:393-8. [PubMed:15817751 ]
General function:
Involved in carboxy-lyase activity
Specific function:
Catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (DOPA) to dopamine, L-5-hydroxytryptophan to serotonin and L-tryptophan to tryptamine.
Gene Name:
DDC
Uniprot ID:
P20711
Molecular weight:
53893.755
Reactions
L-Dopa → Dopamine + CO(2)details
L-Dopa → Dopamine + Carbon dioxidedetails
General function:
Involved in copper ion binding
Specific function:
Catalyzes the degradation of compounds such as putrescine, histamine, spermine, and spermidine, substances involved in allergic and immune responses, cell proliferation, tissue differentiation, tumor formation, and possibly apoptosis. Placental DAO is thought to play a role in the regulation of the female reproductive function.
Gene Name:
ABP1
Uniprot ID:
P19801
Molecular weight:
85377.1
General function:
Involved in copper ion binding
Specific function:
Cell adhesion protein that participates in lymphocyte recirculation by mediating the binding of lymphocytes to peripheral lymph node vascular endothelial cells in an L-selectin-independent fashion. Has a monoamine oxidase activity. May play a role in adipogenesis.
Gene Name:
AOC3
Uniprot ID:
Q16853
Molecular weight:
84621.27
Reactions
Dopamine + Water + Oxygen → 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxidedetails
General function:
Involved in copper ion binding
Specific function:
Has a monoamine oxidase activity with substrate specificity for 2-phenylethylamine and tryptamine. May play a role in adipogenesis. May be a critical modulator of signal transmission in retina.
Gene Name:
AOC2
Uniprot ID:
O75106
Molecular weight:
80515.11
Reactions
Dopamine + Water + Oxygen → 3,4-Dihydroxyphenylacetaldehyde + Ammonia + Hydrogen peroxidedetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]

Transporters

General function:
Involved in ion transmembrane transporter activity
Specific function:
Sodium-ion dependent, high affinity carnitine transporter. Involved in the active cellular uptake of carnitine. Transports one sodium ion with one molecule of carnitine. Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Also relative uptake activity ratio of carnitine to TEA is 11.3
Gene Name:
SLC22A5
Uniprot ID:
O76082
Molecular weight:
62751.1
References
  1. Ohashi R, Tamai I, Nezu Ji J, Nikaido H, Hashimoto N, Oku A, Sai Y, Shimane M, Tsuji A: Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001 Feb;59(2):358-66. [PubMed:11160873 ]
  2. Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, Chen J, Conway SJ, Ganapathy V: Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999 Sep;290(3):1482-92. [PubMed:10454528 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Translocates a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN), 4-(4-(dimethylamino)styryl)- N-methylpyridinium (ASP), the endogenous compounds choline, guanidine, histamine, epinephrine, adrenaline, noradrenaline and dopamine, and the drugs quinine, and metformin. The transport of organic cations is inhibited by a broad array of compounds like tetramethylammonium (TMA), cocaine, lidocaine, NMDA receptor antagonists, atropine, prazosin, cimetidine, TEA and NMN, guanidine, cimetidine, choline, procainamide, quinine, tetrabutylammonium, and tetrapentylammonium. Translocates organic cations in an electrogenic and pH-independent manner. Translocates organic cations across the plasma membrane in both directions. Transports the polyamines spermine and spermidine. Transports pramipexole across the basolateral membrane of the proximal tubular epithelial cells. The choline transport is activated by MMTS. Regulated by various intracellular signaling pathways including inhibition by protein kinase A activation, and endogenously activation by the calmodulin complex, the calmodulin- dependent kinase II and LCK tyrosine kinase
Gene Name:
SLC22A1
Uniprot ID:
O15245
Molecular weight:
61187.4
References
  1. Bednarczyk D, Ekins S, Wikel JH, Wright SH: Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003 Mar;63(3):489-98. [PubMed:12606755 ]
  2. Zhang L, Schaner ME, Giacomini KM: Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther. 1998 Jul;286(1):354-61. [PubMed:9655880 ]
  3. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K: Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001 Nov;18(11):1528-34. [PubMed:11758759 ]
  4. Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H: Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett. 1996 Oct 21;395(2-3):153-6. [PubMed:8898084 ]
  5. Breidert T, Spitzenberger F, Grundemann D, Schomig E: Catecholamine transport by the organic cation transporter type 1 (OCT1). Br J Pharmacol. 1998 Sep;125(1):218-24. [PubMed:9776363 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Mediates tubular uptake of organic compounds from circulation. Mediates the influx of agmatine, dopamine, noradrenaline (norepinephrine), serotonin, choline, famotidine, ranitidine, histamin, creatinine, amantadine, memantine, acriflavine, 4-[4-(dimethylamino)-styryl]-N-methylpyridinium ASP, amiloride, metformin, N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, cisplatin and oxaliplatin. Cisplatin may develop a nephrotoxic action. Transport of creatinine is inhibited by fluoroquinolones such as DX-619 and LVFX. This transporter is a major determinant of the anticancer activity of oxaliplatin and may contribute to antitumor specificity
Gene Name:
SLC22A2
Uniprot ID:
O15244
Molecular weight:
62564.0
References
  1. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K: cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002 Jul;13(7):1703-10. [PubMed:12089365 ]
  2. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V: Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998 Dec 4;273(49):32776-86. [PubMed:9830022 ]
  3. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K: Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001 Nov;18(11):1528-34. [PubMed:11758759 ]
  4. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H: Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998 Aug;54(2):342-52. [PubMed:9687576 ]
  5. Grundemann D, Koster S, Kiefer N, Breidert T, Engelhardt M, Spitzenberger F, Obermuller N, Schomig E: Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J Biol Chem. 1998 Nov 20;273(47):30915-20. [PubMed:9812985 ]
  6. Verhaagh S, Schweifer N, Barlow DP, Zwart R: Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26-q27. Genomics. 1999 Jan 15;55(2):209-18. [PubMed:9933568 ]
General function:
Involved in transmembrane transport
Specific function:
Mediates potential-dependent transport of a variety of organic cations. May play a significant role in the disposition of cationic neurotoxins and neurotransmitters in the brain
Gene Name:
SLC22A3
Uniprot ID:
O75751
Molecular weight:
61279.5
References
  1. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V: Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998 Dec 4;273(49):32776-86. [PubMed:9830022 ]

Only showing the first 10 proteins. There are 28 proteins in total.