Hmdb loader
Read more...Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2021-09-14 15:40:24 UTC
HMDB IDHMDB0000151
Secondary Accession Numbers
  • HMDB0004481
  • HMDB00151
  • HMDB04481
Metabolite Identification
Common NameEstradiol
Description
Structure
Thumb
Synonyms
Chemical FormulaC18H24O2
Average Molecular Weight272.382
Monoisotopic Molecular Weight272.177630012
IUPAC Name(1S,10R,11S,14S,15S)-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-triene-5,14-diol
Traditional Name(1S,10R,11S,14S,15S)-15-methyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-2(7),3,5-triene-5,14-diol
CAS Registry Number50-28-2
SMILES
[H][C@@]12CC[C@H](O)[C@@]1(C)CC[C@]1([H])C3=C(CC[C@@]21[H])C=C(O)C=C3
InChI Identifier
InChI=1S/C18H24O2/c1-18-9-8-14-13-5-3-12(19)10-11(13)2-4-15(14)16(18)6-7-17(18)20/h3,5,10,14-17,19-20H,2,4,6-9H2,1H3/t14-,15-,16+,17+,18+/m1/s1
InChI KeyVOXZDWNPVJITMN-ZBRFXRBCSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSteroids and steroid derivatives
Sub ClassEstrane steroids
Direct ParentEstrogens and derivatives
Alternative Parents
Substituents
  • Estrogen-skeleton
  • 17-hydroxysteroid
  • Hydroxysteroid
  • 3-hydroxysteroid
  • Phenanthrene
  • Tetralin
  • 1-hydroxy-2-unsubstituted benzenoid
  • Benzenoid
  • Cyclic alcohol
  • Secondary alcohol
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Alcohol
  • Aromatic homopolycyclic compound
Molecular FrameworkAromatic homopolycyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point178.5 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.0036 mg/mLNot Available
LogP4.01HANSCH,C ET AL. (1995)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Not Available173.336http://allccs.zhulab.cn/database/detail?ID=AllCCS00000182
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Saliva
  • Urine
Tissue Locations
  • Adipose Tissue
  • Adrenal Cortex
  • Adrenal Gland
  • Brain
  • Epidermis
  • Fibroblasts
  • Kidney
  • Liver
  • Neuron
  • Ovary
  • Placenta
  • Platelet
  • Prostate
  • Skeletal Muscle
  • Spleen
  • Testis
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Menstrual cycle
  1. (). The Merck Manual, 17th ed. Mark H. Beers, MD, Robert Berkow, MD, eds. Whitehouse Station, NJ: Merck Research Labs, 1999.. .
Adrenal hyperplasia, congenital, due to 3-beta-hydroxysteroid dehydrogenase 2 deficiency
  1. Hattori N, Ishihara T, Moridera K, Hino M, Ikekubo K, Kurahachi H: A case of late-onset congenital adrenal hyperplasia due to partial 3 beta-hydroxysteroid dehydrogenase deficiency. Endocr J. 1993 Feb;40(1):107-9. [PubMed:7951484 ]
  2. Benkert AR, Young M, Robinson D, Hendrickson C, Lee PA, Strauss KA: Severe Salt-Losing 3beta-Hydroxysteroid Dehydrogenase Deficiency: Treatment and Outcomes of HSD3B2 c.35G>A Homozygotes. J Clin Endocrinol Metab. 2015 Aug;100(8):E1105-15. doi: 10.1210/jc.2015-2098. Epub 2015 Jun 16. [PubMed:26079780 ]
Aromatase deficiency
  1. Mullis PE, Yoshimura N, Kuhlmann B, Lippuner K, Jaeger P, Harada H: Aromatase deficiency in a female who is compound heterozygote for two new point mutations in the P450arom gene: impact of estrogens on hypergonadotropic hypogonadism, multicystic ovaries, and bone densitometry in childhood. J Clin Endocrinol Metab. 1997 Jun;82(6):1739-45. doi: 10.1210/jcem.82.6.3994. [PubMed:9177373 ]
Congenital Adrenal Hyperplasia, due to 17-Hydroxylase-Deficiency
  1. Wong SL, Shu SG, Tsai CR: Seventeen alpha-hydroxylase deficiency. J Formos Med Assoc. 2006 Feb;105(2):177-81. doi: 10.1016/S0929-6646(09)60342-9. [PubMed:16477341 ]
  2. Kim SM, Rhee JH: A case of 17 alpha-hydroxylase deficiency. Clin Exp Reprod Med. 2015 Jun;42(2):72-6. doi: 10.5653/cerm.2015.42.2.72. Epub 2015 Jun 30. [PubMed:26161337 ]
X-linked ichthyosis
  1. Lykkesfeldt G, Bennett P, Lykkesfeldt AE, Micic S, Moller S, Svenstrup B: Abnormal androgen and oestrogen metabolism in men with steroid sulphatase deficiency and recessive X-linked ichthyosis. Clin Endocrinol (Oxf). 1985 Oct;23(4):385-93. [PubMed:3864567 ]
Lipoid Congenital Adrenal Hyperplasia
  1. Fujieda K, Tajima T, Nakae J, Sageshima S, Tachibana K, Suwa S, Sugawara T, Strauss JF 3rd: Spontaneous puberty in 46,XX subjects with congenital lipoid adrenal hyperplasia. Ovarian steroidogenesis is spared to some extent despite inactivating mutations in the steroidogenic acute regulatory protein (StAR) gene. J Clin Invest. 1997 Mar 15;99(6):1265-71. doi: 10.1172/JCI119284. [PubMed:9077535 ]
Proprotein Convertase 1/3 Deficiency
  1. O'Rahilly S, Gray H, Humphreys PJ, Krook A, Polonsky KS, White A, Gibson S, Taylor K, Carr C: Brief report: impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N Engl J Med. 1995 Nov 23;333(21):1386-90. doi: 10.1056/NEJM199511233332104. [PubMed:7477119 ]
Benign gynecological diseases
  1. Murakami K, Nakagawa T, Shozu M, Uchide K, Koike K, Inoue M: Changes with aging of steroidal levels in the cerebrospinal fluid of women. Maturitas. 1999 Sep 24;33(1):71-80. [PubMed:10585175 ]
Associated OMIM IDs
  • 201810 (Adrenal hyperplasia, congenital, due to 3-beta-hydroxysteroid dehydrogenase 2 deficiency)
  • 613546 (Aromatase deficiency)
  • 202110 (Congenital Adrenal Hyperplasia, due to 17-Hydroxylase-Deficiency)
  • 308100 (X-linked ichthyosis)
  • 201710 (Lipoid Congenital Adrenal Hyperplasia)
  • 600955 (Proprotein Convertase 1/3 Deficiency)
DrugBank IDDB00783
Phenol Explorer Compound IDNot Available
FooDB IDFDB000362
KNApSAcK IDNot Available
Chemspider ID5554
KEGG Compound IDC00951
BioCyc IDNot Available
BiGG ID36456
Wikipedia LinkEstradiol
METLIN ID263
PubChem Compound5757
PDB IDNot Available
ChEBI ID16469
Food Biomarker OntologyNot Available
VMH IDESTRADIOL
MarkerDB IDMDB00000072
Good Scents IDNot Available
References
Synthesis ReferenceVasiljeva, L. L.; Demin, P. M.; Kochev, D. M.; Lapitskaya, M. A.; Pivnitskya, K. K. New synthesis of estradiol from androsta-1,4-diene-3,17-dione. Russian Chemical Bulletin (Translation of Izvestiya Akademii Nauk, Seriya Khimicheskaya) (1999), 48(3), 593-595.
Material Safety Data Sheet (MSDS)Not Available
General References

Only showing the first 10 proteins. There are 66 proteins in total.

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Capable of catalyzing the interconversion of testosterone and androstenedione, as well as estradiol and estrone. Also has 20-alpha-HSD activity. Uses NADH while EDH17B3 uses NADPH.
Gene Name:
HSD17B2
Uniprot ID:
P37059
Molecular weight:
42784.75
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
Estradiol + NAD → Estrone + NADH + Hydrogen Iondetails
Estradiol + NADP → Estrone + NADPH + Hydrogen Iondetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme has glucuronidating capacity with steroid substrates such as 5-beta-androstane 3-alpha,17-beta-diol, estradiol, ADT, eugenol and bile acids. Only isoform 1 seems to be active.
Gene Name:
UGT2B28
Uniprot ID:
Q9BY64
Molecular weight:
38742.9
Reactions
Estradiol + Uridine diphosphate glucuronic acid → 17-beta-Estradiol-3-glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner. Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA- binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual
Gene Name:
ESR2
Uniprot ID:
Q92731
Molecular weight:
59215.8
References
  1. Vijayanathan V, Greenfield NJ, Thomas TJ, Ivanova MM, Tyulmenkov VV, Klinge CM, Gallo MA, Thomas T: Effects of estradiol and 4-hydroxytamoxifen on the conformation, thermal stability, and DNA recognition of estrogen receptor beta. Biochem Cell Biol. 2007 Feb;85(1):1-10. [PubMed:17464340 ]
  2. Sasson S: Equilibrium binding analysis of estrogen agonists and antagonists: relation to the activation of the estrogen receptor. Pathol Biol (Paris). 1991 Jan;39(1):59-69. [PubMed:2011412 ]
General function:
Involved in oxidoreductase activity
Specific function:
NAD-dependent 17-beta-hydroxysteroid dehydrogenase with highest activity towards estradiol. Has very low activity towards testosterone. The heteroteramer with CBR4 has NADH-dependent 3-ketoacyl-acyl carrier protein reductase activity. May play a role in biosynthesis of fatty acids in mitochondria.
Gene Name:
HSD17B8
Uniprot ID:
Q92506
Molecular weight:
26973.56
Reactions
Estradiol + NAD(P)(+) → Estrone + NAD(P)Hdetails
Estradiol + NAD → Estrone + NADH + Hydrogen Iondetails
Estradiol + NADP → Estrone + NADPH + Hydrogen Iondetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme is active on polyhydroxylated estrogens (such as estriol, 4-hydroxyestrone and 2-hydroxyestriol) and xenobiotics (such as 4-methylumbelliferone, 1-naphthol, 4-nitrophenol, 2-aminophenol, 4-hydroxybiphenyl and menthol). It is capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid.
Gene Name:
UGT2B4
Uniprot ID:
P06133
Molecular weight:
60512.035
Reactions
Estradiol + Uridine diphosphate glucuronic acid → 17-beta-Estradiol-3-glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate.
Gene Name:
UGT1A4
Uniprot ID:
P22310
Molecular weight:
60024.535
Reactions
Estradiol + Uridine diphosphate glucuronic acid → 17-beta-Estradiol-3-glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds.
Gene Name:
UGT2B10
Uniprot ID:
P36537
Molecular weight:
60773.485
Reactions
Estradiol + Uridine diphosphate glucuronic acid → 17-beta-Estradiol-3-glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Its unique specificity for 3,4-catechol estrogens and estriol suggests it may play an important role in regulating the level and activity of these potent and active estrogen metabolites. Is also active with androsterone, hyodeoxycholic acid and tetrachlorocatechol (in vitro).
Gene Name:
UGT2B7
Uniprot ID:
P16662
Molecular weight:
60720.15
Reactions
Estradiol + Uridine diphosphate glucuronic acid → 17-beta-Estradiol-3-glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme displays activity toward several classes of xenobiotic substrates, including simple phenolic compounds, 7-hydroxylated coumarins, flavonoids, anthraquinones, and certain drugs and their hydroxylated metabolites. It also catalyzes the glucuronidation of endogenous estrogens and androgens.
Gene Name:
UGT2B15
Uniprot ID:
P54855
Molecular weight:
61035.815
Reactions
Estradiol + Uridine diphosphate glucuronic acid → 17-beta-Estradiol-3-glucuronide + Uridine 5'-diphosphatedetails
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDP-glucuronosyltransferases catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. They are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Active on odorants and seems to be involved in olfaction; it could help clear lipophilic odorant molecules from the sensory epithelium.
Gene Name:
UGT2A1
Uniprot ID:
Q9Y4X1
Molecular weight:
60771.605
Reactions
Estradiol + Uridine diphosphate glucuronic acid → 17-beta-Estradiol-3-glucuronide + Uridine 5'-diphosphatedetails

Transporters

General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as pravastatin, taurocholate, methotrexate, dehydroepiandrosterone sulfate, 17-beta-glucuronosyl estradiol, estrone sulfate, prostaglandin E2, thromboxane B2, leukotriene C3, leukotriene E4, thyroxine and triiodothyronine. May play an important role in the clearance of bile acids and organic anions from the liver
Gene Name:
SLCO1B1
Uniprot ID:
Q9Y6L6
Molecular weight:
76448.0
References
  1. Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A: Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm Res. 2001 Sep;18(9):1262-9. [PubMed:11683238 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as taurocholate, the prostaglandins PGD2, PGE1, PGE2, leukotriene C4, thromboxane B2 and iloprost
Gene Name:
SLCO2B1
Uniprot ID:
O94956
Molecular weight:
76697.9
References
  1. Tamai I, Nozawa T, Koshida M, Nezu J, Sai Y, Tsuji A: Functional characterization of human organic anion transporting polypeptide B (OATP-B) in comparison with liver-specific OATP-C. Pharm Res. 2001 Sep;18(9):1262-9. [PubMed:11683238 ]
General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Rao US, Fine RL, Scarborough GA: Antiestrogens and steroid hormones: substrates of the human P-glycoprotein. Biochem Pharmacol. 1994 Jul 19;48(2):287-92. [PubMed:7914405 ]
  2. Kim WY, Benet LZ: P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res. 2004 Jul;21(7):1284-93. [PubMed:15290871 ]
General function:
Involved in ATP binding
Specific function:
Xenobiotic transporter that may play an important role in the exclusion of xenobiotics from the brain. May be involved in brain-to-blood efflux. Appears to play a major role in the multidrug resistance phenotype of several cancer cell lines. When overexpressed, the transfected cells become resistant to mitoxantrone, daunorubicin and doxorubicin, display diminished intracellular accumulation of daunorubicin, and manifest an ATP- dependent increase in the efflux of rhodamine 123
Gene Name:
ABCG2
Uniprot ID:
Q9UNQ0
Molecular weight:
72313.5
References
  1. Imai Y, Asada S, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y: Breast cancer resistance protein exports sulfated estrogens but not free estrogens. Mol Pharmacol. 2003 Sep;64(3):610-8. [PubMed:12920197 ]
  2. Imai Y, Tsukahara S, Ishikawa E, Tsuruo T, Sugimoto Y: Estrone and 17beta-estradiol reverse breast cancer resistance protein-mediated multidrug resistance. Jpn J Cancer Res. 2002 Mar;93(3):231-5. [PubMed:11927002 ]
General function:
Involved in transporter activity
Specific function:
Mediates saturable uptake of estrone sulfate, dehydroepiandrosterone sulfate and related compounds
Gene Name:
SLC22A11
Uniprot ID:
Q9NSA0
Molecular weight:
59970.9
References
  1. Cha SH, Sekine T, Kusuhara H, Yu E, Kim JY, Kim DK, Sugiyama Y, Kanai Y, Endou H: Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J Biol Chem. 2000 Feb 11;275(6):4507-12. [PubMed:10660625 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Translocates a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN), 4-(4-(dimethylamino)styryl)- N-methylpyridinium (ASP), the endogenous compounds choline, guanidine, histamine, epinephrine, adrenaline, noradrenaline and dopamine, and the drugs quinine, and metformin. The transport of organic cations is inhibited by a broad array of compounds like tetramethylammonium (TMA), cocaine, lidocaine, NMDA receptor antagonists, atropine, prazosin, cimetidine, TEA and NMN, guanidine, cimetidine, choline, procainamide, quinine, tetrabutylammonium, and tetrapentylammonium. Translocates organic cations in an electrogenic and pH-independent manner. Translocates organic cations across the plasma membrane in both directions. Transports the polyamines spermine and spermidine. Transports pramipexole across the basolateral membrane of the proximal tubular epithelial cells. The choline transport is activated by MMTS. Regulated by various intracellular signaling pathways including inhibition by protein kinase A activation, and endogenously activation by the calmodulin complex, the calmodulin- dependent kinase II and LCK tyrosine kinase
Gene Name:
SLC22A1
Uniprot ID:
O15245
Molecular weight:
61187.4
References
  1. Hayer-Zillgen M, Bruss M, Bonisch H: Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 2002 Jul;136(6):829-36. [PubMed:12110607 ]
  2. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V: Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998 Dec 4;273(49):32776-86. [PubMed:9830022 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as sulfobromophthalein (BSP) and conjugated (taurocholate) and unconjugated (cholate) bile acids
Gene Name:
SLCO1A2
Uniprot ID:
P46721
Molecular weight:
74144.1
References
  1. Kanai N, Lu R, Bao Y, Wolkoff AW, Vore M, Schuster VL: Estradiol 17 beta-D-glucuronide is a high-affinity substrate for oatp organic anion transporter. Am J Physiol. 1996 Feb;270(2 Pt 2):F326-31. [PubMed:8779894 ]
  2. Bossuyt X, Muller M, Hagenbuch B, Meier PJ: Polyspecific drug and steroid clearance by an organic anion transporter of mammalian liver. J Pharmacol Exp Ther. 1996 Mar;276(3):891-6. [PubMed:8786566 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Mediates tubular uptake of organic compounds from circulation. Mediates the influx of agmatine, dopamine, noradrenaline (norepinephrine), serotonin, choline, famotidine, ranitidine, histamin, creatinine, amantadine, memantine, acriflavine, 4-[4-(dimethylamino)-styryl]-N-methylpyridinium ASP, amiloride, metformin, N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, cisplatin and oxaliplatin. Cisplatin may develop a nephrotoxic action. Transport of creatinine is inhibited by fluoroquinolones such as DX-619 and LVFX. This transporter is a major determinant of the anticancer activity of oxaliplatin and may contribute to antitumor specificity
Gene Name:
SLC22A2
Uniprot ID:
O15244
Molecular weight:
62564.0
References
  1. Hayer-Zillgen M, Bruss M, Bonisch H: Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 2002 Jul;136(6):829-36. [PubMed:12110607 ]
  2. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V: Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998 Dec 4;273(49):32776-86. [PubMed:9830022 ]
General function:
Involved in transmembrane transport
Specific function:
Mediates potential-dependent transport of a variety of organic cations. May play a significant role in the disposition of cationic neurotoxins and neurotransmitters in the brain
Gene Name:
SLC22A3
Uniprot ID:
O75751
Molecular weight:
61279.5
References
  1. Hayer-Zillgen M, Bruss M, Bonisch H: Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 2002 Jul;136(6):829-36. [PubMed:12110607 ]
  2. Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V: Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 1998 Dec 4;273(49):32776-86. [PubMed:9830022 ]

Only showing the first 10 proteins. There are 66 proteins in total.