Hmdb loader
Read more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2021-09-14 15:44:46 UTC
HMDB IDHMDB0000186
Secondary Accession Numbers
  • HMDB0005761
  • HMDB00186
  • HMDB05761
Metabolite Identification
Common NameAlpha-Lactose
Description
Structure
Thumb
Synonyms
Chemical FormulaC12H22O11
Average Molecular Weight342.2965
Monoisotopic Molecular Weight342.116211546
IUPAC Name(2R,3R,4S,5R,6S)-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxane-3,4,5-triol
Traditional Nameα-lactose
CAS Registry Number63-42-3
SMILES
OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)[C@@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O
InChI Identifier
InChI=1S/C12H22O11/c13-1-3-5(15)6(16)9(19)12(22-3)23-10-4(2-14)21-11(20)8(18)7(10)17/h3-20H,1-2H2/t3-,4-,5+,6+,7-,8-,9-,10-,11+,12+/m1/s1
InChI KeyGUBGYTABKSRVRQ-XLOQQCSPSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as o-glycosyl compounds. These are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentO-glycosyl compounds
Alternative Parents
Substituents
  • O-glycosyl compound
  • Disaccharide
  • Oxane
  • Secondary alcohol
  • Hemiacetal
  • Oxacycle
  • Organoheterocyclic compound
  • Polyol
  • Acetal
  • Hydrocarbon derivative
  • Primary alcohol
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point201 - 202 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility195 mg/mL at 20 °CNot Available
LogPNot AvailableNot Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Astarita_neg166.730932474
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Lysosome
  • Golgi apparatus
Biospecimen Locations
  • Blood
  • Breast Milk
  • Feces
  • Urine
Tissue Locations
  • Bladder
  • Epidermis
  • Intestine
  • Platelet
  • Skeletal Muscle
  • Spleen
Pathways
Normal Concentrations
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
UrineDetected and Quantified51.475 +/- 126.985 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Eosinophilic esophagitis
    • Analysis of 30 no...
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothBladder cancer details
UrineDetected and Quantified585 umol/mmol creatinineInfant (0-1 year old)MaleLactose Intolerance details
Associated Disorders and Diseases
Disease References
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Lactose Intolerance
  1. Hoskova A, Sabacky J, Mrskos A, Pospisil R: Severe lactose intolerance with lactosuria and vomiting. Arch Dis Child. 1980 Apr;55(4):304-5. [PubMed:7416780 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB021789
KNApSAcK IDC00001136
Chemspider ID76293
KEGG Compound IDC00243
BioCyc IDLACTOSE
BiGG ID34366
Wikipedia LinkNot Available
METLIN ID267
PubChem Compound84571
PDB IDNot Available
ChEBI ID36219
Food Biomarker OntologyNot Available
VMH IDLCTS
MarkerDB IDMDB00000088
Good Scents IDNot Available
References
Synthesis ReferenceRuffing, Anne; Mao, Zichao; Ruizhen Chen, Rachel. Metabolic engineering of Agrobacterium sp. for UDP-galactose regeneration and oligosaccharide synthesis. Metabolic Engineering (2006), 8(5), 465-473.
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
LPH splits lactose in the small intestine.
Gene Name:
LCT
Uniprot ID:
P09848
Molecular weight:
218584.77
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
Responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids. Can produce lactose.
Gene Name:
B4GALT2
Uniprot ID:
O60909
Molecular weight:
41971.815
General function:
Involved in lactose synthase activity
Specific function:
Regulatory subunit of lactose synthase, changes the substrate specificity of galactosyltransferase in the mammary gland making glucose a good acceptor substrate for this enzyme. This enables LS to synthesize lactose, the major carbohydrate component of milk. In other tissues, galactosyltransferase transfers galactose onto the N-acetylglucosamine of the oligosaccharide chains in glycoproteins.
Gene Name:
LALBA
Uniprot ID:
P00709
Molecular weight:
Not Available
General function:
Involved in transferase activity, transferring glycosyl groups
Specific function:
The Golgi complex form catalyzes the production of lactose in the lactating mammary gland and could also be responsible for the synthesis of complex-type N-linked oligosaccharides in many glycoproteins as well as the carbohydrate moieties of glycolipids. The cell surface form functions as a recognition molecule during a variety of cell to cell and cell to matrix interactions, as those occurring during development and egg fertilization, by binding to specific oligosaccharide ligands on opposing cells or in the extracellular matrix.
Gene Name:
B4GALT1
Uniprot ID:
P15291
Molecular weight:
43919.895
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
Cleaves beta-linked terminal galactosyl residues from gangliosides, glycoproteins, and glycosaminoglycans. Isoform 2 has no beta-galactosidase catalytic activity, but plays functional roles in the formation of extracellular elastic fibers (elastogenesis) and in the development of connective tissue. Seems to be identical to the elastin-binding protein (EBP), a major component of the non-integrin cell surface receptor expressed on fibroblasts, smooth muscle cells, chondroblasts, leukocytes, and certain cancer cell types. In elastin producing cells, associates with tropoelastin intracellularly and functions as a recycling molecular chaperone which facilitates the secretions of tropoelastin and its assembly into elastic fibers.
Gene Name:
GLB1
Uniprot ID:
P16278
Molecular weight:
Not Available
General function:
Involved in glycolipid transporter activity
Specific function:
Accelerates the intermembrane transfer of various glycolipids. Catalyzes the transfer of various glycosphingolipids between membranes but does not catalyze the transfer of phospholipids. May be involved in the intracellular translocation of glucosylceramides
Gene Name:
GLTP
Uniprot ID:
Q9NZD2
Molecular weight:
23849.6
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]