Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-02-21 17:14:38 UTC
HMDB IDHMDB0000239
Secondary Accession Numbers
  • HMDB0002075
  • HMDB00239
  • HMDB02075
Metabolite Identification
Common NamePyridoxine
DescriptionPyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605 ). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia ). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women.
Structure
Thumb
Synonyms
Chemical FormulaC8H11NO3
Average Molecular Weight169.1778
Monoisotopic Molecular Weight169.073893223
IUPAC Name4,5-bis(hydroxymethyl)-2-methylpyridin-3-ol
Traditional Namepyridoxine
CAS Registry Number65-23-6
SMILES
CC1=C(O)C(CO)=C(CO)C=N1
InChI Identifier
InChI=1S/C8H11NO3/c1-5-8(12)7(4-11)6(3-10)2-9-5/h2,10-12H,3-4H2,1H3
InChI KeyLXNHXLLTXMVWPM-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as pyridoxines. These are pyridoxal derivatives in which the carbaldehyde group at position 2 of the pyridoxal moiety is replaced by a hydroxymethyl group.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPyridines and derivatives
Sub ClassPyridoxines
Direct ParentPyridoxines
Alternative Parents
Substituents
  • Pyridoxine
  • Methylpyridine
  • Hydroxypyridine
  • Heteroaromatic compound
  • Azacycle
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Aromatic alcohol
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Industrial applicationBiological roleIndirect biological role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point159 - 162 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility79 mg/mLNot Available
LogP-0.77SANGSTER (1993)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Baker136.02730932474
[M-H]-MetCCS_train_neg130.74930932474
[M+H]+Baker135.69230932474
[M+H]+MetCCS_train_pos134.57930932474
[M-H]-Not Available133.1http://allccs.zhulab.cn/database/detail?ID=AllCCS00000316
[M+H]+Not Available134.7http://allccs.zhulab.cn/database/detail?ID=AllCCS00000316
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Urine
Tissue Locations
  • Erythrocyte
  • Liver
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Homozygous sickle cell disease
  1. van der Dijs FP, Schnog JJ, Brouwer DA, Velvis HJ, van den Berg GA, Bakker AJ, Duits AJ, Muskiet FD, Muskiet FA: Elevated homocysteine levels indicate suboptimal folate status in pediatric sickle cell patients. Am J Hematol. 1998 Nov;59(3):192-8. [PubMed:9798656 ]
Epilepsy, early-onset, vitamin B6-dependent
  1. Darin N, Reid E, Prunetti L, Samuelsson L, Husain RA, Wilson M, El Yacoubi B, Footitt E, Chong WK, Wilson LC, Prunty H, Pope S, Heales S, Lascelles K, Champion M, Wassmer E, Veggiotti P, de Crecy-Lagard V, Mills PB, Clayton PT: Mutations in PROSC Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin-B6-Dependent Epilepsy. Am J Hum Genet. 2016 Dec 1;99(6):1325-1337. doi: 10.1016/j.ajhg.2016.10.011. [PubMed:27912044 ]
Crohn's disease
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Ulcerative colitis
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Colorectal cancer
  1. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Associated OMIM IDs
DrugBank IDDB00165
Phenol Explorer Compound IDNot Available
FooDB IDFDB000574
KNApSAcK IDC00001551
Chemspider ID1025
KEGG Compound IDC00314
BioCyc IDPYRIDOXINE
BiGG IDNot Available
Wikipedia LinkPyridoxine
METLIN IDNot Available
PubChem Compound1054
PDB IDNot Available
ChEBI ID16709
Food Biomarker OntologyNot Available
VMH IDPYDXN
MarkerDB IDMDB00000117
Good Scents IDNot Available
References
Synthesis ReferenceItov, Z. I.; Stepanova, S. V.; El'yanov, B. S.; Gunar, V. I. Synthesis of pyridoxine under high pressure. Khimiko-Farmatsevticheskii Zhurnal (1987), 21(7), 858-62.
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in methylenetetrahydrofolate reductase (NADPH) activity
Specific function:
Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine.
Gene Name:
MTHFR
Uniprot ID:
P42898
Molecular weight:
74595.895
General function:
Involved in oxidoreductase activity
Specific function:
Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism.
Gene Name:
ALDH7A1
Uniprot ID:
P49419
Molecular weight:
58486.74
General function:
Involved in pyridoxamine-phosphate oxidase activity
Specific function:
Catalyzes the oxidation of either pyridoxine 5'-phosphate (PNP) or pyridoxamine 5'-phosphate (PMP) into pyridoxal 5'-phosphate (PLP).
Gene Name:
PNPO
Uniprot ID:
Q9NVS9
Molecular weight:
29987.79
Reactions
Pyridoxine + Oxygen → Pyridoxal + Hydrogen peroxidedetails
General function:
Involved in cysteine biosynthetic process from serine
Specific function:
Only known pyridoxal phosphate-dependent enzyme that contains heme. Important regulator of hydrogen sulfide, especially in the brain, utilizing cysteine instead of serine to catalyze the formation of hydrogen sulfide. Hydrogen sulfide is a gastratransmitter with signaling and cytoprotective effects such as acting as a neuromodulator in the brain to protect neurons against hypoxic injury (By similarity).
Gene Name:
CBS
Uniprot ID:
P35520
Molecular weight:
60586.05
General function:
Involved in metabolic process
Specific function:
Catalyzes the reversible conversion of 3-phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4-phosphonooxybutanoate to phosphohydroxythreonine (By similarity).
Gene Name:
PSAT1
Uniprot ID:
Q9Y617
Molecular weight:
35188.305
General function:
Involved in pyridoxal kinase activity
Specific function:
Required for synthesis of pyridoxal-5-phosphate from vitamin B6.
Gene Name:
PDXK
Uniprot ID:
O00764
Molecular weight:
35102.105
Reactions
Adenosine triphosphate + Pyridoxine → ADP + Pyridoxine 5'-phosphatedetails
General function:
Involved in transport
Specific function:
Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc
Gene Name:
ALB
Uniprot ID:
P02768
Molecular weight:
69365.9
General function:
Involved in catalytic activity
Specific function:
Protein serine phosphatase that dephosphorylates 'Ser-3' in cofilin and probably also dephosphorylates phospho-serine residues in DSTN. Regulates cofilin-dependent actin cytoskeleton reorganization. Required for normal progress through mitosis and normal cytokinesis. Does not dephosphorylate phospho-threonines in LIMK1. Does not dephosphorylate peptides containing phospho-tyrosine. Pyridoxal phosphate phosphatase. Has some activity towards pyridoxal 5'-phosphate (PLP), pyridoxine 5'-phosphate (PMP) and pyridoxine 5'-phosphate (PNP), with a highest activity with PLP followed by PNP.
Gene Name:
PDXP
Uniprot ID:
Q96GD0
Molecular weight:
31697.735
Reactions
Pyridoxine + Phosphate → Pyridoxine 5'-phosphate + Waterdetails
General function:
Involved in phosphatase activity
Specific function:
Phosphatase that has high activity toward pyridoxal 5'-phosphate (PLP). Also active at much lower level toward pyrophosphate, phosphoethanolamine (PEA), phosphocholine (PCho), phospho-l-tyrosine, fructose-6-phosphate, p-nitrophenyl phosphate, and h-glycerophosphate.
Gene Name:
PHOSPHO2
Uniprot ID:
Q8TCD6
Molecular weight:
27768.72
Reactions
Pyridoxine + Phosphate → Pyridoxine 5'-phosphate + Waterdetails