Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-02-21 17:15:22 UTC
HMDB IDHMDB0000990
Secondary Accession Numbers
  • HMDB00990
Metabolite Identification
Common NameAcetaldehyde
DescriptionAcetaldehyde, also known as ethanal, belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms. Acetaldehyde exists in all living species, ranging from bacteria to humans. Within humans, acetaldehyde participates in a number of enzymatic reactions. In particular, acetaldehyde can be biosynthesized from ethanol which is mediated by the enzyme alcohol dehydrogenase 1B. Acetaldehyde can also be converted to acetic acid by the enzyme aldehyde dehydrogenase (mitochondrial) and aldehyde dehydrogenase X (mitochondrial). The main method of production is the oxidation of ethylene by the Wacker process, which involves oxidation of ethylene using a homogeneous palladium/copper system: 2 CH2CH2 + O2 → 2 CH3CHO. In the 1970s, the world capacity of the Wacker-Hoechst direct oxidation process exceeded 2 million tonnes annually. In humans, acetaldehyde is involved in disulfiram action pathway. Acetaldehyde is an aldehydic, ethereal, and fruity tasting compound. Outside of the human body, acetaldehyde is found, on average, in the highest concentration in a few different foods, such as sweet oranges, pineapples, and mandarin orange (clementine, tangerine) and in a lower concentration in . acetaldehyde has also been detected, but not quantified in several different foods, such as malabar plums, malus (crab apple), rose hips, natal plums, and medlars. This could make acetaldehyde a potential biomarker for the consumption of these foods. In condensation reactions, acetaldehyde is prochiral. Acetaldehyde is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Acetaldehyde has been found to be associated with several diseases such as alcoholism, ulcerative colitis, nonalcoholic fatty liver disease, and crohn's disease; also acetaldehyde has been linked to the inborn metabolic disorders including aldehyde dehydrogenase deficiency (III) sulfate is used to reoxidize the mercury back to the mercury. Acetaldehyde was first observed by the Swedish pharmacist/chemist Carl Wilhelm Scheele (1774); it was then investigated by the French chemists Antoine François, comte de Fourcroy and Louis Nicolas Vauquelin (1800), and the German chemists Johann Wolfgang Döbereiner (1821, 1822, 1832) and Justus von Liebig (1835). At room temperature, acetaldehyde (CH3CHO) is more stable than vinyl alcohol (CH2CHOH) by 42.7 kJ/mol: Overall the keto-enol tautomerization occurs slowly but is catalyzed by acids. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Acetaldehyde is also created by thermal degradation or ultraviolet photo-degradation of some thermoplastic polymers during or after manufacture. The water industry generally recognizes 20–40 ppb as the taste/odor threshold for acetaldehyde. The level at which an average consumer could detect acetaldehyde is still considerably lower than any toxicity.
Structure
Data?1676999722
Synonyms
ValueSource
AcetaldehydChEBI
AcetaldehydesChEBI
Acetic aldehydeChEBI
AzetaldehydChEBI
EthanalChEBI
Ethyl aldehydeChEBI
AldehydeHMDB
Chemical FormulaC2H4O
Average Molecular Weight44.0526
Monoisotopic Molecular Weight44.02621475
IUPAC Nameacetaldehyde
Traditional Nameacetaldehyde
CAS Registry Number75-07-0
SMILES
CC=O
InChI Identifier
InChI=1S/C2H4O/c1-2-3/h2H,1H3
InChI KeyIKHGUXGNUITLKF-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as short-chain aldehydes. These are an aldehyde with a chain length containing between 2 and 5 carbon atoms.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbonyl compounds
Direct ParentShort-chain aldehydes
Alternative Parents
Substituents
  • Organic oxide
  • Hydrocarbon derivative
  • Short-chain aldehyde
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateLiquid
Experimental Molecular Properties
PropertyValueReference
Melting Point-123 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility1000 mg/mLNot Available
LogP-0.34TSCATS
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility225 g/LALOGPS
logP-0.01ALOGPS
logP-0.38ChemAxon
logS0.71ALOGPS
pKa (Strongest Acidic)16.73ChemAxon
pKa (Strongest Basic)-6.9ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count0ChemAxon
Refractivity11.72 m³·mol⁻¹ChemAxon
Polarizability4.48 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+115.67530932474
DeepCCS[M-H]-113.81730932474
DeepCCS[M-2H]-149.1130932474
DeepCCS[M+Na]+123.10930932474

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
AcetaldehydeCC=O674.5Standard polar33892256
AcetaldehydeCC=O346.2Standard non polar33892256
AcetaldehydeCC=O388.7Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
Acetaldehyde,1TMS,isomer #1C=CO[Si](C)(C)C629.0Semi standard non polar33892256
Acetaldehyde,1TMS,isomer #1C=CO[Si](C)(C)C596.0Standard non polar33892256
Acetaldehyde,1TMS,isomer #1C=CO[Si](C)(C)C750.6Standard polar33892256
Acetaldehyde,1TBDMS,isomer #1C=CO[Si](C)(C)C(C)(C)C848.5Semi standard non polar33892256
Acetaldehyde,1TBDMS,isomer #1C=CO[Si](C)(C)C(C)(C)C852.7Standard non polar33892256
Acetaldehyde,1TBDMS,isomer #1C=CO[Si](C)(C)C(C)(C)C973.6Standard polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - Acetaldehyde GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9000000000-69e31ccd415894a689122016-09-22Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Acetaldehyde GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Acetaldehyde GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
MSMass Spectrum (Electron Ionization)splash10-002f-9000000000-65d53ef91644a0bacd6c2014-09-20Not AvailableView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental LC-MS/MSLC-MS/MS Spectrum - Acetaldehyde Quattro_QQQ 10V, Positive-QTOF (Annotated)splash10-0002-9000000000-f1274d4b6066776ca8982012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Acetaldehyde Quattro_QQQ 25V, Positive-QTOF (Annotated)splash10-001l-9000000000-c1e37abbf2ad6054dc102012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Acetaldehyde Quattro_QQQ 40V, Positive-QTOF (Annotated)splash10-000t-9000000000-2289ead4f7210282cd872012-07-24HMDB team, MONAView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 10V, Positive-QTOFsplash10-0002-9000000000-cf54221d95714f5478c42015-05-27Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 20V, Positive-QTOFsplash10-0002-9000000000-8d8afe7422ae76f7ebb92015-05-27Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 40V, Positive-QTOFsplash10-004j-9000000000-d68dec9f846cfe9acc722015-05-27Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 10V, Negative-QTOFsplash10-0006-9000000000-4430d6a790eca4132aa42015-05-27Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 20V, Negative-QTOFsplash10-0006-9000000000-607a755de038203a6b682015-05-27Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 40V, Negative-QTOFsplash10-0006-9000000000-63c9f623d8dc4b1e60a22015-05-27Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 10V, Positive-QTOFsplash10-0002-9000000000-00ba25458eb6c0cc29402021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 20V, Positive-QTOFsplash10-0002-9000000000-00ba25458eb6c0cc29402021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 40V, Positive-QTOFsplash10-0002-9000000000-0d922cdfd7f6947230c02021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 10V, Negative-QTOFsplash10-0006-9000000000-452a5f79625d3401d4952021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 20V, Negative-QTOFsplash10-0006-9000000000-452a5f79625d3401d4952021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Acetaldehyde 40V, Negative-QTOFsplash10-0006-9000000000-2758497e574a090105472021-09-23Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)2022-08-22Wishart LabView Spectrum

IR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+)2023-02-03FELIX labView Spectrum
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+)2023-02-03FELIX labView Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Mitochondria
  • Endoplasmic reticulum
  • Peroxisome
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Sweat
  • Urine
Tissue Locations
  • Adrenal Medulla
  • Brain
  • Epidermis
  • Erythrocyte
  • Fibroblasts
  • Intestine
  • Kidney
  • Liver
  • Neuron
  • Ovary
  • Pancreas
  • Placenta
  • Platelet
  • Skeletal Muscle
  • Testis
  • Thyroid Gland
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified1.0 +/- 0.2 uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
Cerebrospinal Fluid (CSF)Detected and Quantified27.0 - 51.3 uMAdult (>18 years old)Not SpecifiedNormal details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Not Specified
Normal
details
FecesDetected but not QuantifiedNot QuantifiedNewborn (0-30 days old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Not SpecifiedNormal details
SweatDetected and Quantified< 10 uMAdult (60 years old)Male
Normal
details
SweatDetected and Quantified< 10 uMAdult (40 years old)Male
Normal
details
UrineDetected and Quantified23.6 (0.065-43.4) umol/mmol creatinineInfant (0-1 year old)BothNormal
    • Geigy Scientific ...
details
UrineDetected and Quantified2.6 (0.8-4.2) umol/mmol creatinineAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified30.4 +/- 20.3 uMAdult (>18 years old)BothAldehyde dehydrogenase deficiency details
BloodDetected and Quantified4.1 +/- 1.7 uMAdult (>18 years old)Both
Alcoholism
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothCrohns disease details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothUlcerative colitis details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Ulcerative colitis
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Crohn's disease
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Campylobacter jejuni infection
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Clostridium difficile infection
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Ulcerative Colitis
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Nonalcoholic fatty liver disease (NAFLD)
details
Associated Disorders and Diseases
Disease References
Aldehyde dehydrogenase deficiency
  1. Brecher AS, Adamu MT: Short- and long-term effects of acetaldehyde on plasma. Alcohol. 2002 Jan;26(1):49-53. [PubMed:11958947 ]
Alcoholism
  1. Brecher AS, Adamu MT: Short- and long-term effects of acetaldehyde on plasma. Alcohol. 2002 Jan;26(1):49-53. [PubMed:11958947 ]
Ulcerative colitis
  1. Garner CE, Smith S, de Lacy Costello B, White P, Spencer R, Probert CS, Ratcliffe NM: Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J. 2007 Jun;21(8):1675-88. Epub 2007 Feb 21. [PubMed:17314143 ]
  2. De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, Rutgeerts P, Verbeke K: Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015 Mar;64(3):447-58. doi: 10.1136/gutjnl-2013-306423. Epub 2014 May 8. [PubMed:24811995 ]
  3. Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS: Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther. 2016 Mar;43(5):596-611. doi: 10.1111/apt.13522. Epub 2016 Jan 25. [PubMed:26806034 ]
Nonalcoholic fatty liver disease
  1. Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J, Myers RP, Rioux KP: Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013 Jul;11(7):868-75.e1-3. doi: 10.1016/j.cgh.2013.02.015. Epub 2013 Feb 27. [PubMed:23454028 ]
Crohn's disease
  1. De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, Rutgeerts P, Verbeke K: Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015 Mar;64(3):447-58. doi: 10.1136/gutjnl-2013-306423. Epub 2014 May 8. [PubMed:24811995 ]
  2. Ahmed I, Greenwood R, Costello B, Ratcliffe N, Probert CS: Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment Pharmacol Ther. 2016 Mar;43(5):596-611. doi: 10.1111/apt.13522. Epub 2016 Jan 25. [PubMed:26806034 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB008297
KNApSAcK IDC00007392
Chemspider ID172
KEGG Compound IDC00084
BioCyc IDACETALD
BiGG ID33792
Wikipedia LinkAcetaldehyde
METLIN ID3200
PubChem Compound177
PDB IDNot Available
ChEBI ID15343
Food Biomarker OntologyNot Available
VMH IDACALD
MarkerDB IDMDB00000293
Good Scents IDNot Available
References
Synthesis ReferenceWertheim, E. Laboratory preparation of acetaldehyde. Journal of the American Chemical Society (1922), 44 2658-9.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Nakamura K, Iwahashi K, Furukawa A, Ameno K, Kinoshita H, Ijiri I, Sekine Y, Suzuki K, Iwata Y, Minabe Y, Mori N: Acetaldehyde adducts in the brain of alcoholics. Arch Toxicol. 2003 Oct;77(10):591-3. Epub 2003 Sep 17. [PubMed:14574447 ]
  2. Takeuchi M, Watai T, Sasaki N, Choei H, Iwaki M, Ashizawa T, Inagaki Y, Yamagishi S, Kikuchi S, Riederer P, Saito T, Bucala R, Kameda Y: Neurotoxicity of acetaldehyde-derived advanced glycation end products for cultured cortical neurons. J Neuropathol Exp Neurol. 2003 May;62(5):486-96. [PubMed:12769188 ]
  3. Higuchi S, Matsushita S, Masaki T, Yokoyama A, Kimura M, Suzuki G, Mochizuki H: Influence of genetic variations of ethanol-metabolizing enzymes on phenotypes of alcohol-related disorders. Ann N Y Acad Sci. 2004 Oct;1025:472-80. [PubMed:15542751 ]
  4. Oba T, Maeno Y, Ishida K: Differential contribution of clinical amounts of acetaldehyde to skeletal and cardiac muscle dysfunction in alcoholic myopathy. Curr Pharm Des. 2005;11(6):791-80. [PubMed:15777233 ]
  5. Nishimura FT, Fukunaga T, Kajiura H, Umeno K, Takakura H, Ono T, Nishijo H: Effects of aldehyde dehydrogenase-2 genotype on cardiovascular and endocrine responses to alcohol in young Japanese subjects. Auton Neurosci. 2002 Nov 29;102(1-2):60-70. [PubMed:12492137 ]
  6. Boyden TW, Silvert MA, Pamenter RW: Acetaldehyde acutely impairs canine testicular testosterone secretion. Eur J Pharmacol. 1981 Apr 9;70(4):571-6. [PubMed:7195339 ]
  7. Theruvathu JA, Jaruga P, Nath RG, Dizdaroglu M, Brooks PJ: Polyamines stimulate the formation of mutagenic 1,N2-propanodeoxyguanosine adducts from acetaldehyde. Nucleic Acids Res. 2005 Jun 21;33(11):3513-20. Print 2005. [PubMed:15972793 ]
  8. Burton A: Acetaldehyde links alcohol consumption to cancer. Lancet Oncol. 2005 Sep;6(9):643. [PubMed:16161263 ]
  9. Hard ML, Iqbal U, Brien JF, Koren G: Binding of acetaldehyde to human and Guinea pig placentae in vitro. Placenta. 2003 Feb-Mar;24(2-3):149-54. [PubMed:12566241 ]
  10. Forn-Frias C, Sanchis-Segura C: [The possible role of acetaldehyde in the brain damage caused by the chronic consumption of alcohol]. Rev Neurol. 2003 Sep 1-15;37(5):485-93. [PubMed:14533100 ]
  11. Deitrich RA: Acetaldehyde: deja vu du jour. J Stud Alcohol. 2004 Sep;65(5):557-72. [PubMed:15536764 ]
  12. Tyulina OV, Prokopieva VD, Boldyrev AA, Johnson P: Erythrocyte and plasma protein modification in alcoholism: a possible role of acetaldehyde. Biochim Biophys Acta. 2006 May;1762(5):558-63. Epub 2006 Apr 3. [PubMed:16630710 ]
  13. Morozov IuE, Salomatin EM, Okhotin VE: [Brain acetaldehyde and ethanol: method of determination and diagnostic significance in ethanol poisoning]. Sud Med Ekspert. 2002 Mar-Apr;45(2):35-40. [PubMed:12063798 ]
  14. Tyulina OV, Prokopieva VD, Dodd RD, Hawkins JR, Clay SW, Wilson DO, Boldyrev AA, Johnson P: In vitro effects of ethanol, acetaldehyde and fatty acid ethyl esters on human erythrocytes. Alcohol Alcohol. 2002 Mar-Apr;37(2):179-86. [PubMed:11912075 ]
  15. Brooks PJ, Theruvathu JA: DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis. Alcohol. 2005 Apr;35(3):187-93. [PubMed:16054980 ]
  16. Matsuse H, Shimoda T, Fukushima C, Mitsuta K, Kawano T, Tomari S, Saeki S, Kondoh Y, Machida I, Obase Y, Asai S, Kohno S: Screening for acetaldehyde dehydrogenase 2 genotype in alcohol-induced asthma by using the ethanol patch test. J Allergy Clin Immunol. 2001 Nov;108(5):715-9. [PubMed:11692094 ]
  17. Yokoyama T, Saito K, Lwin H, Yoshiike N, Yamamoto A, Matsushita Y, Date C, Tanaka H: Epidemiological evidence that acetaldehyde plays a significant role in the development of decreased serum folate concentration and elevated mean corpuscular volume in alcohol drinkers. Alcohol Clin Exp Res. 2005 Apr;29(4):622-30. [PubMed:15834228 ]
  18. Mascia MP, Maiya R, Borghese CM, Lobo IA, Hara K, Yamakura T, Gong DH, Beckstead MJ: Does acetaldehyde mediate ethanol action in the central nervous system? Alcohol Clin Exp Res. 2001 Nov;25(11):1570-5. [PubMed:11707631 ]
  19. Takeuchi M, Saito T: Cytotoxicity of acetaldehyde-derived advanced glycation end-products (AA-AGE) in alcoholic-induced neuronal degeneration. Alcohol Clin Exp Res. 2005 Dec;29(12 Suppl):220S-4S. [PubMed:16385226 ]
  20. Latvala J, Melkko J, Parkkila S, Jarvi K, Makkonen K, Niemela O: Assays for acetaldehyde-derived adducts in blood proteins based on antibodies against acetaldehyde/lipoprotein condensates. Alcohol Clin Exp Res. 2001 Nov;25(11):1648-53. [PubMed:11707639 ]
  21. Salaspuro M: Microbial metabolism of ethanol and acetaldehyde and clinical consequences. Addict Biol. 1997 Jan;2(1):35-46. doi: 10.1080/13556219772840. [PubMed:26735439 ]
  22. Nosova T, Jousimies-Somer H, Jokelainen K, Heine R, Salaspuro M: Acetaldehyde production and metabolism by human indigenous and probiotic Lactobacillus and Bifidobacterium strains. Alcohol Alcohol. 2000 Nov-Dec;35(6):561-8. [PubMed:11093962 ]
  23. Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Drager A, Mih N, Gatto F, Nilsson A, Preciat Gonzalez GA, Aurich MK, Prlic A, Sastry A, Danielsdottir AD, Heinken A, Noronha A, Rose PW, Burley SK, Fleming RMT, Nielsen J, Thiele I, Palsson BO: Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol. 2018 Mar;36(3):272-281. doi: 10.1038/nbt.4072. Epub 2018 Feb 19. [PubMed:29457794 ]

Only showing the first 10 proteins. There are 20 proteins in total.

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Converts gamma-trimethylaminobutyraldehyde into gamma-butyrobetaine. Catalyzes the irreversible oxidation of a broad range of aldehydes to the corresponding acids in an NAD-dependent reaction.
Gene Name:
ALDH9A1
Uniprot ID:
P49189
Molecular weight:
56291.485
Reactions
Acetaldehyde + NAD + Water → Acetic acid + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
ALDHs play a major role in the detoxification of alcohol-derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation. This protein preferentially oxidizes aromatic aldehyde substrates. It may play a role in the oxidation of toxic aldehydes.
Gene Name:
ALDH3A1
Uniprot ID:
P30838
Molecular weight:
50394.57
Reactions
Acetaldehyde + NADP + Water → Acetic acid + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism.
Gene Name:
ALDH7A1
Uniprot ID:
P49419
Molecular weight:
58486.74
Reactions
Acetaldehyde + NAD + Water → Acetic acid + NADH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Recognizes as substrates free retinal and cellular retinol-binding protein-bound retinal. Seems to be the key enzyme in the formation of an RA gradient along the dorso-ventral axis during the early eye development and also in the development of the olfactory system (By similarity).
Gene Name:
ALDH1A3
Uniprot ID:
P47895
Molecular weight:
56107.995
Reactions
Acetaldehyde + NADP + Water → Acetic acid + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Not Available
Gene Name:
ALDH2
Uniprot ID:
P05091
Molecular weight:
56380.93
Reactions
Acetaldehyde + NAD + Water → Acetic acid + NADH + Hydrogen Iondetails
Acetaldehyde + NADP + Water → Acetic acid + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid.
Gene Name:
ALDH3A2
Uniprot ID:
P51648
Molecular weight:
54847.36
Reactions
Acetaldehyde + NAD + Water → Acetic acid + NADH + Hydrogen Iondetails
Acetaldehyde + NADP + Water → Acetic acid + NADPH + Hydrogen Iondetails
General function:
Involved in oxidoreductase activity
Specific function:
ALDHs play a major role in the detoxification of alcohol-derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation.
Gene Name:
ALDH1B1
Uniprot ID:
P30837
Molecular weight:
57248.96
Reactions
Acetaldehyde + NAD + Water → Acetic acid + NADH + Hydrogen Iondetails
Acetaldehyde + NADP + Water → Acetic acid + NADPH + Hydrogen Iondetails
General function:
Involved in 6-pyruvoyltetrahydropterin synthase activity
Specific function:
Involved in the biosynthesis of tetrahydrobiopterin, an essential cofactor of aromatic amino acid hydroxylases. Catalyzes the transformation of 7,8-dihydroneopterin triphosphate into 6-pyruvoyl tetrahydropterin.
Gene Name:
PTS
Uniprot ID:
Q03393
Molecular weight:
16385.63
Reactions
Dihydroneopterin triphosphate + Water → 6-Carboxy-5,6,7,8-tetrahydropterin + Acetaldehyde + Triphosphatedetails
General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the NADPH-dependent reduction of a variety of aromatic and aliphatic aldehydes to their corresponding alcohols. Catalyzes the reduction of mevaldate to mevalonic acid and of glyceraldehyde to glycerol. Has broad substrate specificity. In vitro substrates include succinic semialdehyde, 4-nitrobenzaldehyde, 1,2-naphthoquinone, methylglyoxal, and D-glucuronic acid. Plays a role in the activation of procarcinogens, such as polycyclic aromatic hydrocarbon trans-dihydrodiols, and in the metabolism of various xenobiotics and drugs, including the anthracyclines doxorubicin (DOX) and daunorubicin (DAUN).
Gene Name:
AKR1A1
Uniprot ID:
P14550
Molecular weight:
36572.71
Reactions
Ethanol + NADP → Acetaldehyde + NADPH + Hydrogen Iondetails
General function:
Involved in zinc ion binding
Specific function:
Not Available
Gene Name:
ADH4
Uniprot ID:
P08319
Molecular weight:
40221.335
Reactions
Ethanol + NAD → Acetaldehyde + NADH + Hydrogen Iondetails

Only showing the first 10 proteins. There are 20 proteins in total.