Hmdb loader
Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2021-09-14 15:48:15 UTC
HMDB IDHMDB0001201
Secondary Accession Numbers
  • HMDB01201
Metabolite Identification
Common NameGuanosine diphosphate
DescriptionGuanosine diphosphate, also known as 5'-GDP or 5'-diphosphate, guanosine, belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. Guanosine diphosphate exists in all living species, ranging from bacteria to humans. In humans, guanosine diphosphate is involved in intracellular signalling through adenosine receptor A2B and adenosine. Outside of the human body, Guanosine diphosphate has been detected, but not quantified in several different foods, such as devilfish, java plums, green beans, almonds, and orange mints. Guanosine diphosphate is a purine ribonucleoside 5'-diphosphate resulting from the formal condensation of the hydroxy group at the 5' position of guanosine with pyrophosphoric acid.
Structure
Thumb
Synonyms
Chemical FormulaC10H15N5O11P2
Average Molecular Weight443.2005
Monoisotopic Molecular Weight443.024329371
IUPAC Name[({[(2R,3S,4R,5R)-5-(2-amino-6-oxo-6,9-dihydro-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid
Traditional Name{[(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy(hydroxy)phosphoryl}oxyphosphonic acid
CAS Registry Number146-91-8
SMILES
NC1=NC2=C(N=CN2[C@@H]2O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]2O)C(=O)N1
InChI Identifier
InChI=1S/C10H15N5O11P2/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(25-9)1-24-28(22,23)26-27(19,20)21/h2-3,5-6,9,16-17H,1H2,(H,22,23)(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1
InChI KeyQGWNDRXFNXRZMB-UUOKFMHZSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety.
KingdomOrganic compounds
Super ClassNucleosides, nucleotides, and analogues
ClassPurine nucleotides
Sub ClassPurine ribonucleotides
Direct ParentPurine ribonucleoside diphosphates
Alternative Parents
Substituents
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside monophosphate
  • Pentose phosphate
  • Pentose-5-phosphate
  • Glycosyl compound
  • N-glycosyl compound
  • 6-oxopurine
  • Hypoxanthine
  • Monosaccharide phosphate
  • Organic pyrophosphate
  • Pentose monosaccharide
  • Imidazopyrimidine
  • Purine
  • Aminopyrimidine
  • Monoalkyl phosphate
  • Pyrimidone
  • Monosaccharide
  • N-substituted imidazole
  • Organic phosphoric acid derivative
  • Alkyl phosphate
  • Phosphoric acid ester
  • Pyrimidine
  • Vinylogous amide
  • Tetrahydrofuran
  • Azole
  • Imidazole
  • Heteroaromatic compound
  • Secondary alcohol
  • 1,2-diol
  • Organoheterocyclic compound
  • Azacycle
  • Oxacycle
  • Organooxygen compound
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Alcohol
  • Amine
  • Organic oxygen compound
  • Primary amine
  • Organonitrogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Biological locationSource
Process
Naturally occurring process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-Not Available182.5http://allccs.zhulab.cn/database/detail?ID=AllCCS00000161
[M+H]+Not Available192.1http://allccs.zhulab.cn/database/detail?ID=AllCCS00000161
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Mitochondria
  • Nucleus
  • Golgi apparatus
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified15.0 +/- 2.0 uMAdult (>18 years old)MaleNormal
    • Geigy Scientific ...
details
BloodDetected and Quantified18.0 +/- 8.0 uMAdult (>18 years old)BothNormal
    • Geigy Scientific ...
details
Cerebrospinal Fluid (CSF)Detected and Quantified1.86 +/- 0.027 uMAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
Cerebrospinal Fluid (CSF)Detected and Quantified2.11 +/- 1.93 uMAdult (>18 years old)BothRachialgia details
Cerebrospinal Fluid (CSF)Detected and Quantified4.05 +/- 0.03 uMAdult (>18 years old)BothSubarachnoid hemorrhage details
Cerebrospinal Fluid (CSF)Detected and Quantified0.99 +/- 1.32 uMAdult (>18 years old)BothEpilepsy details
Cerebrospinal Fluid (CSF)Detected and Quantified2.55 +/- 1.62 uMAdult (>18 years old)Both
Stroke
details
Cerebrospinal Fluid (CSF)Detected and Quantified2.59 +/- 1.77 uMAdult (>18 years old)BothNeuroinfection details
Associated Disorders and Diseases
Disease References
Rachialgia
  1. Czarnecka J, Cieslak M, Michal K: Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Aug 5;822(1-2):85-90. [PubMed:15993662 ]
Subarachnoid hemorrhage
  1. Czarnecka J, Cieslak M, Michal K: Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Aug 5;822(1-2):85-90. [PubMed:15993662 ]
Epilepsy
  1. Czarnecka J, Cieslak M, Michal K: Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Aug 5;822(1-2):85-90. [PubMed:15993662 ]
Stroke
  1. Czarnecka J, Cieslak M, Michal K: Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Aug 5;822(1-2):85-90. [PubMed:15993662 ]
Neuroinfection
  1. Czarnecka J, Cieslak M, Michal K: Application of solid phase extraction and high-performance liquid chromatography to qualitative and quantitative analysis of nucleotides and nucleosides in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci. 2005 Aug 5;822(1-2):85-90. [PubMed:15993662 ]
Associated OMIM IDs
DrugBank IDDB04315
Phenol Explorer Compound IDNot Available
FooDB IDFDB030875
KNApSAcK IDNot Available
Chemspider ID8630
KEGG Compound IDC00035
BioCyc IDGDP
BiGG ID33599
Wikipedia LinkGuanosine diphosphate
METLIN ID6077
PubChem Compound8977
PDB IDNot Available
ChEBI ID17552
Food Biomarker OntologyNot Available
VMH IDGDP
MarkerDB IDMDB00000308
Good Scents IDNot Available
References
Synthesis ReferenceEdlin, Gordon; Donini, P. Synthesis of guanosine 5'-diphosphate, 2'-(or 3'-) diphosphate, and related nucleotides in a variety of physiological conditions. Journal of Biological Chemistry (1971), 246(13), 4371-3.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Chantin C, Bonin B, Boulieu R, Bory C: Liquid-chromatographic study of purine metabolism abnormalities in purine nucleoside phosphorylase deficiency. Clin Chem. 1996 Feb;42(2):326-8. [PubMed:8595732 ]

Only showing the first 10 proteins. There are 230 proteins in total.

Enzymes

General function:
Involved in hydrolase activity
Specific function:
In the nervous system, could hydrolyze ATP and other nucleotides to regulate purinergic neurotransmission. Could also be implicated in the prevention of platelet aggregation by hydrolyzing platelet-activating ADP to AMP. Hydrolyzes ATP and ADP equally well.
Gene Name:
ENTPD1
Uniprot ID:
P49961
Molecular weight:
58706.0
Reactions
Guanosine diphosphate + Water → Guanosine monophosphate + Phosphatedetails
Guanosine triphosphate + Water → Guanosine diphosphate + Phosphatedetails
General function:
Involved in calcium ion binding
Specific function:
Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis.
Gene Name:
CANT1
Uniprot ID:
Q8WVQ1
Molecular weight:
44839.24
Reactions
Guanosine diphosphate + Water → Guanosine monophosphate + Phosphatedetails
General function:
Involved in hydrolase activity
Specific function:
Has a threefold preference for the hydrolysis of ATP over ADP.
Gene Name:
ENTPD3
Uniprot ID:
O75355
Molecular weight:
59104.76
Reactions
Guanosine diphosphate + Water → Guanosine monophosphate + Phosphatedetails
Guanosine triphosphate + Water → Guanosine diphosphate + Phosphatedetails
General function:
Involved in ATP binding
Specific function:
Phosphorylates uridine and cytidine to uridine monophosphate and cytidine monophosphate. Does not phosphorylate deoxyribonucleosides or purine ribonucleosides. Can use ATP or GTP as a phosphate donor. Can also phosphorylate cytidine and uridine nucleoside analogs such as 6-azauridine, 5-fluorouridine, 4-thiouridine, 5-bromouridine, N(4)-acetylcytidine, N(4)-benzoylcytidine, 5-fluorocytidine, 2-thiocytidine, 5-methylcytidine, and N(4)-anisoylcytidine.
Gene Name:
UCK1
Uniprot ID:
Q9HA47
Molecular weight:
22760.43
Reactions
Guanosine triphosphate + Cytidine → Guanosine diphosphate + Cytidine monophosphatedetails
Guanosine triphosphate + Uridine → Guanosine diphosphate + Uridine 5'-monophosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP (By similarity).
Gene Name:
NME4
Uniprot ID:
O00746
Molecular weight:
20658.45
Reactions
Adenosine triphosphate + Guanosine diphosphate → ADP + Guanosine triphosphatedetails
General function:
Involved in oxidation reduction
Specific function:
Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides.
Gene Name:
RRM1
Uniprot ID:
P23921
Molecular weight:
90069.375
Reactions
dGDP + Thioredoxin disulfide + Water → Guanosine diphosphate + Thioredoxindetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination.
Gene Name:
NME1
Uniprot ID:
P15531
Molecular weight:
17148.635
Reactions
Adenosine triphosphate + Guanosine diphosphate → ADP + Guanosine triphosphatedetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate.
Gene Name:
NME7
Uniprot ID:
Q9Y5B8
Molecular weight:
42491.365
Reactions
Adenosine triphosphate + Guanosine diphosphate → ADP + Guanosine triphosphatedetails
General function:
Involved in oxidoreductase activity
Specific function:
Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides. Inhibits Wnt signaling.
Gene Name:
RRM2
Uniprot ID:
P31350
Molecular weight:
44877.25
Reactions
dGDP + Thioredoxin disulfide + Water → Guanosine diphosphate + Thioredoxindetails
General function:
Involved in nucleoside diphosphate kinase activity
Specific function:
Major role in the synthesis of nucleoside triphosphates other than ATP. Negatively regulates Rho activity by interacting with AKAP13/LBC. Acts as a transcriptional activator of the MYC gene; binds DNA non-specifically (PubMed:8392752). Exhibits histidine protein kinase activity.
Gene Name:
NME2
Uniprot ID:
P22392
Molecular weight:
30136.92
Reactions
Adenosine triphosphate + Guanosine diphosphate → ADP + Guanosine triphosphatedetails

Only showing the first 10 proteins. There are 230 proteins in total.