Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2006-05-22 14:17:32 UTC |
---|
Update Date | 2022-10-24 19:44:10 UTC |
---|
HMDB ID | HMDB0002014 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | cis-5-Tetradecenoylcarnitine |
---|
Description | cis-5-Tetradecenoylcarnitine is an acylcarnitine. More specifically, it is an cis-5-tetradecenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review (PMID: 35710135 ), acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. cis-5-Tetradecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine cis-5-Tetradecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748 ). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular cis-5-Tetradecenoylcarnitine is elevated in the blood or plasma of individuals with very long-chain acyl-CoA dehydrogenase (VLACD) deficiency (PMID: 25843429 , PMID: 19327992 , PMID: 11433098 , PMID: 18670371 , PMID: 12828998 ), trifunctional protein (mitochondrial long-chain ketoacyl-coa thiolase) deficiency (PMID: 16423905 ), mitochondrial dysfunction in diabetes patients (PMID: 28726959 ), acadvl acyl-coa dehydrogenase very long chain deficiency (PMID: 29491033 ), nonalcoholic fatty liver disease (NAFLD) (PMID: 27211699 ), and insulin resistance type 2 diabetes (PMID: 24358186 ). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulin's inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774 ). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903 ). Defects in enzymes of the beta-oxidation pathway cause sudden, unexplained death in childhood, acute hepatic encephalopathy or liver failure, skeletal myopathy, and cardiomyopathy (PMID: 7479827 ). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available (PMID: 35710135 ). |
---|
Structure | CCCCCCCC\C=C/CCCC(=O)OC(CC([O-])=O)C[N+](C)(C)C InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(17-20(23)24)18-22(2,3)4/h12-13,19H,5-11,14-18H2,1-4H3/b13-12- |
---|
Synonyms | Value | Source |
---|
3-[(5Z)-Tetradec-5-enoyloxy]-4-(trimethylammonio)butanoate | ChEBI | 3-[(5Z)-Tetradec-5-enoyloxy]-4-(trimethylammonio)butanoic acid | Generator | cis-5-Tetradecenoylcarnitine | ChEBI |
|
---|
Chemical Formula | C21H39NO4 |
---|
Average Molecular Weight | 369.5387 |
---|
Monoisotopic Molecular Weight | 369.287908741 |
---|
IUPAC Name | 3-[(5Z)-tetradec-5-enoyloxy]-4-(trimethylazaniumyl)butanoate |
---|
Traditional Name | cis-5-tetradecenoylcarnitine |
---|
CAS Registry Number | 835598-21-5 |
---|
SMILES | CCCCCCCC\C=C/CCCC(=O)OC(CC([O-])=O)C[N+](C)(C)C |
---|
InChI Identifier | InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(17-20(23)24)18-22(2,3)4/h12-13,19H,5-11,14-18H2,1-4H3/b13-12- |
---|
InChI Key | NNCBVXBBLABOCB-SEYXRHQNSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Fatty Acyls |
---|
Sub Class | Fatty acid esters |
---|
Direct Parent | Acyl carnitines |
---|
Alternative Parents | |
---|
Substituents | - Acyl-carnitine
- Dicarboxylic acid or derivatives
- Tetraalkylammonium salt
- Quaternary ammonium salt
- Carboxylic acid ester
- Carboxylic acid salt
- Carboxylic acid derivative
- Carboxylic acid
- Organic nitrogen compound
- Organooxygen compound
- Organonitrogen compound
- Organic salt
- Hydrocarbon derivative
- Organic oxide
- Organopnictogen compound
- Organic oxygen compound
- Carbonyl group
- Amine
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | |
---|
Process | Not Available |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatized |
---|
Disease References | Very Long Chain Acyl-CoA Dehydrogenase Deficiency |
---|
- Costa CG, Struys EA, Bootsma A, ten Brink HJ, Dorland L, Tavares de Almeida I, Duran M, Jakobs C: Quantitative analysis of plasma acylcarnitines using gas chromatography chemical ionization mass fragmentography. J Lipid Res. 1997 Jan;38(1):173-82. [PubMed:9034211 ]
| Obesity |
---|
- Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
| Eosinophilic esophagitis |
---|
- Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
|
|
---|
General References | - Strauss AW, Powell CK, Hale DE, Anderson MM, Ahuja A, Brackett JC, Sims HF: Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10496-500. [PubMed:7479827 ]
- Shigematsu Y, Hirano S, Hata I, Tanaka Y, Sudo M, Tajima T, Sakura N, Yamaguchi S, Takayanagi M: Selective screening for fatty acid oxidation disorders by tandem mass spectrometry: difficulties in practical discrimination. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):63-72. [PubMed:12828998 ]
- Wood JC, Magera MJ, Rinaldo P, Seashore MR, Strauss AW, Friedman A: Diagnosis of very long chain acyl-dehydrogenase deficiency from an infant's newborn screening card. Pediatrics. 2001 Jul;108(1):E19. [PubMed:11433098 ]
- Archie JP Jr: Splenic artery stump back pressure. Am Surg. 1992 Aug;58(8):504-5. [PubMed:1642390 ]
- FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
- Reuter SE, Evans AM: Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet. 2012 Sep 1;51(9):553-72. doi: 10.1007/BF03261931. [PubMed:22804748 ]
- Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW: Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009 Mar;58(3):550-8. doi: 10.2337/db08-1078. Epub 2008 Dec 10. [PubMed:19073774 ]
- Schooneman MG, Vaz FM, Houten SM, Soeters MR: Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013 Jan;62(1):1-8. doi: 10.2337/db12-0466. [PubMed:23258903 ]
- Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M, Testani JM, Wang TS, Verma A, Samsky MD, Donahue MP, Ilkayeva OR, Bowles DE, Patel CB, Milano CA, Rogers JG, Felker GM, O'Connor CM, Shah SH, Kraus WE: Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical Circulatory Support. J Am Coll Cardiol. 2016 Jan 26;67(3):291-9. doi: 10.1016/j.jacc.2015.10.079. [PubMed:26796394 ]
- Abu Bakar MH, Sarmidi MR: Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects. Mol Biosyst. 2017 Aug 22;13(9):1838-1853. doi: 10.1039/c7mb00333a. [PubMed:28726959 ]
- Hisahara S, Matsushita T, Furuyama H, Tajima G, Shigematsu Y, Imai T, Shimohama S: A heterozygous missense mutation in adolescent-onset very long-chain acyl-CoA dehydrogenase deficiency with exercise-induced rhabdomyolysis. Tohoku J Exp Med. 2015 Apr;235(4):305-10. doi: 10.1620/tjem.235.305. [PubMed:25843429 ]
- Laforet P, Acquaviva-Bourdain C, Rigal O, Brivet M, Penisson-Besnier I, Chabrol B, Chaigne D, Boespflug-Tanguy O, Laroche C, Bedat-Millet AL, Behin A, Delevaux I, Lombes A, Andresen BS, Eymard B, Vianey-Saban C: Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009 May;19(5):324-9. doi: 10.1016/j.nmd.2009.02.007. Epub 2009 Mar 26. [PubMed:19327992 ]
- Tajima G, Sakura N, Shirao K, Okada S, Tsumura M, Nishimura Y, Ono H, Hasegawa Y, Hata I, Naito E, Yamaguchi S, Shigematsu Y, Kobayashi M: Development of a new enzymatic diagnosis method for very-long-chain Acyl-CoA dehydrogenase deficiency by detecting 2-hexadecenoyl-CoA production and its application in tandem mass spectrometry-based selective screening and newborn screening in Japan. Pediatr Res. 2008 Dec;64(6):667-72. doi: 10.1203/PDR.0b013e318187cc44. [PubMed:18670371 ]
- Das AM, Illsinger S, Lucke T, Hartmann H, Ruiter JP, Steuerwald U, Waterham HR, Duran M, Wanders RJ: Isolated mitochondrial long-chain ketoacyl-CoA thiolase deficiency resulting from mutations in the HADHB gene. Clin Chem. 2006 Mar;52(3):530-4. doi: 10.1373/clinchem.2005.062000. Epub 2006 Jan 19. [PubMed:16423905 ]
- Lepori V, Muhlhause F, Sewell AC, Jagannathan V, Janzen N, Rosati M, Alves de Sousa FMM, Tschopp A, Schupbach G, Matiasek K, Tipold A, Leeb T, Kornberg M: A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy. G3 (Bethesda). 2018 May 4;8(5):1545-1554. doi: 10.1534/g3.118.200084. [PubMed:29491033 ]
- Chen Y, Li C, Liu L, Guo F, Li S, Huang L, Sun C, Feng R: Serum metabonomics of NAFLD plus T2DM based on liquid chromatography-mass spectrometry. Clin Biochem. 2016 Sep;49(13-14):962-6. doi: 10.1016/j.clinbiochem.2016.05.016. Epub 2016 May 20. [PubMed:27211699 ]
- Mai M, Tonjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB: Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One. 2013 Dec 16;8(12):e82459. doi: 10.1371/journal.pone.0082459. eCollection 2013. [PubMed:24358186 ]
- Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB: Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022 Jul;74(3):506-551. doi: 10.1124/pharmrev.121.000408. [PubMed:35710135 ]
|
---|