Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2006-05-22 15:12:10 UTC |
---|
Update Date | 2022-03-07 02:49:17 UTC |
---|
HMDB ID | HMDB0002789 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | Zeaxanthin |
---|
Description | Zeaxanthin is a carotenoid xanthophyll and is one of the most common carotenoid found in nature. It is the pigment that gives corn, saffron, and many other plants their characteristic color. Zeaxanthin breaks down to form picrocrocin and safranal, which are responsible for the taste and aroma of saffron Carotenoids are among the most common pigments in nature and are natural lipid soluble antioxidants. Zeaxanthin is one of the two carotenoids (the other is lutein) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli and eggs, are associated with a significant reduction in the risk for cataract (up to 20%) and for age-related macular degeneration (up to 40%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations. (PMID: 11023002 ). Zeaxanthin has been found to be a microbial metabolite, it can be produced by Algibacter, Aquibacter, Escherichia, Flavobacterium, Formosa, Gramella, Hyunsoonleella, Kordia, Mesoflavibacter, Muricauda, Nubsella, Paracoccus, Siansivirga, Sphingomonas, Zeaxanthinibacter and yeast (https://reader.elsevier.com/reader/sd/pii/S0924224417302571?token=DE6BC6CC7DCDEA6150497AA3E375097A00F8E0C12AE03A8E420D85D1AC8855E62103143B5AE0B57E9C5828671F226801). It is a marker for the activity of Bacillus subtilis and/or Pseudomonas aeruginosa in the intestine. Higher levels are associated with higher levels of Bacillus or Pseudomonas. (PMID: 17555270 ; PMID: 12147474 ) |
---|
Structure | C\C(\C=C\C=C(/C)\C=C\C1=C(C)C[C@@H](O)CC1(C)C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C1=C(C)C[C@@H](O)CC1(C)C InChI=1S/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-24,35-36,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35-,36-/m1/s1 |
---|
Synonyms | Value | Source |
---|
(3R,3'r)-Dihydroxy-beta,beta-carotene | ChEBI | all-trans-beta-Carotene-3,3'-diol | ChEBI | all-trans-Zeaxanthin | ChEBI | Anchovyxanthin | ChEBI | beta,beta-Carotene-3,3'-diol | ChEBI | (3R,3'r)-beta,beta-Carotene-3,3'-diol | Kegg | (3R,3'r)-Dihydroxy-b,b-carotene | Generator | (3R,3'r)-Dihydroxy-β,β-carotene | Generator | all-trans-b-Carotene-3,3'-diol | Generator | all-trans-Β-carotene-3,3'-diol | Generator | b,b-Carotene-3,3'-diol | Generator | Β,β-carotene-3,3'-diol | Generator | (3R,3'r)-b,b-Carotene-3,3'-diol | Generator | (3R,3'r)-Β,β-carotene-3,3'-diol | Generator | 3R,3'r Zeaxanthin | MeSH | 3R,3'r-Zeaxanthin | MeSH | Beta Carotene 3,3' diol | MeSH | Zeaxanthins | MeSH | beta-Carotene-3,3'-diol | MeSH | (3R,3'r)-Zeaxanthin | HMDB | all-trans-Anchovyxanthin | HMDB | Xanthophyll 3 | HMDB | Zeaxanthol | HMDB | (3R,3'R)-Dihydroxy-beta-carotene | HMDB | (3R,3'R)-Dihydroxy-β-carotene | HMDB | (3R,3'R)-Zeaxanthin | HMDB | (3R,3’R)-Dihydroxy-β-carotene | HMDB | (3R,3’R)-Zeaxanthin | HMDB | (3R,3’R)-β,β-Carotene-3,3’-diol | HMDB | all-E-Zeaxanthin | HMDB | all-trans-3R,3'R-Zeaxanthin | HMDB | all-trans-3R,3’R-Zeaxanthin | HMDB |
|
---|
Chemical Formula | C40H56O2 |
---|
Average Molecular Weight | 568.886 |
---|
Monoisotopic Molecular Weight | 568.428031043 |
---|
IUPAC Name | (1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol |
---|
Traditional Name | zeaxanthin |
---|
CAS Registry Number | 144-68-3 |
---|
SMILES | C\C(\C=C\C=C(/C)\C=C\C1=C(C)C[C@@H](O)CC1(C)C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C1=C(C)C[C@@H](O)CC1(C)C |
---|
InChI Identifier | InChI=1S/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-24,35-36,41-42H,25-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35-,36-/m1/s1 |
---|
InChI Key | JKQXZKUSFCKOGQ-QAYBQHTQSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Prenol lipids |
---|
Sub Class | Tetraterpenoids |
---|
Direct Parent | Xanthophylls |
---|
Alternative Parents | |
---|
Substituents | - Xanthophyll
- Secondary alcohol
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic homomonocyclic compound
|
---|
Molecular Framework | Aliphatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | Not Available |
---|
Disposition | |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | |
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatized |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted GC-MS | Predicted GC-MS Spectrum - Zeaxanthin GC-MS (Non-derivatized) - 70eV, Positive | splash10-0udi-2000190000-2cc8481518a353268253 | 2017-09-01 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Zeaxanthin GC-MS (1 TMS) - 70eV, Positive | splash10-004i-3000049000-45b1b78e4b208f89e457 | 2017-10-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Zeaxanthin GC-MS ("Zeaxanthin,1TMS,#1" TMS) - 70eV, Positive | Not Available | 2021-10-14 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Zeaxanthin GC-MS (TMS_2_1) - 70eV, Positive | Not Available | 2021-10-15 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Zeaxanthin GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | 2021-10-15 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Zeaxanthin GC-MS (TBDMS_2_1) - 70eV, Positive | Not Available | 2021-10-15 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin QIT 20V, positive-QTOF | splash10-0xsi-0000490000-61514ff28dff7d7222e1 | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin QIT 1V, positive-QTOF | splash10-0udi-0000290000-09f7ca5714961ff8f77e | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin NA , positive-QTOF | splash10-00or-0930100000-c29159f503dad4260c04 | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin LC-ESI-QTOF 20V, positive-QTOF | splash10-00or-0960430000-8996d3474c2f84178dd0 | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin LC-ESI-QTOF 30V, positive-QTOF | splash10-0aba-0930000000-8b9aa98251b44f2236fa | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin LC-ESI-QTOF 40V, positive-QTOF | splash10-014i-0930030000-987a65a5fdcee3816338 | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 30V, Positive-QTOF | splash10-0aba-0930000000-b50e7afd480c60427730 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 20V, Positive-QTOF | splash10-00or-0950320000-82e2fd12101c0f8a5aa3 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 20V, Positive-QTOF | splash10-00or-0950420000-376dfbe507c212fad75c | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 40V, Positive-QTOF | splash10-014i-0930030000-7a03386b81c0af2daaae | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 30V, Positive-QTOF | splash10-0aba-0930000000-63535133943f458f5619 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 40V, Positive-QTOF | splash10-014i-0930030000-18da3552a389eec49470 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 20V, Positive-QTOF | splash10-00or-0950420000-97b603fc0db5c5d1268c | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 30V, Positive-QTOF | splash10-0aba-0930000000-a5be07cc9aa560c7ad05 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 30V, Positive-QTOF | splash10-0aba-0930000000-247f26afe81a420dd329 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Zeaxanthin 20V, Positive-QTOF | splash10-00or-0950320000-a6da820e1ac88487b354 | 2021-09-20 | HMDB team, MONA | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 10V, Positive-QTOF | splash10-0gb9-0111190000-a3e4a4d0d67ea298da49 | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 20V, Positive-QTOF | splash10-0frt-0649330000-191e0ac14dcad154b4b3 | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 40V, Positive-QTOF | splash10-000b-0449130000-5644e7cc2bbfa6ef09f0 | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 10V, Negative-QTOF | splash10-014i-0000090000-8f8c6909e2b7e1022ce9 | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 20V, Negative-QTOF | splash10-014i-0000090000-421f46802deab60d756d | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 40V, Negative-QTOF | splash10-0uxr-0553390000-883720ed84543eb475e2 | 2016-08-03 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 10V, Negative-QTOF | splash10-014i-0001090000-762864ffd0f72009c688 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 20V, Negative-QTOF | splash10-014i-0104290000-79f130816293d1629a5c | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Zeaxanthin 40V, Negative-QTOF | splash10-003b-0229210000-8aa487c6a883739666a2 | 2021-09-22 | Wishart Lab | View Spectrum |
|
---|
General References | - Wenzel AJ, Gerweck C, Barbato D, Nicolosi RJ, Handelman GJ, Curran-Celentano J: A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J Nutr. 2006 Oct;136(10):2568-73. [PubMed:16988128 ]
- Rapp LM, Maple SS, Choi JH: Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci. 2000 Apr;41(5):1200-9. [PubMed:10752961 ]
- Khachik F, Bernstein PS, Garland DL: Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci. 1997 Aug;38(9):1802-11. [PubMed:9286269 ]
- Handelman GJ, Nightingale ZD, Lichtenstein AH, Schaefer EJ, Blumberg JB: Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. Am J Clin Nutr. 1999 Aug;70(2):247-51. [PubMed:10426702 ]
- Dasch B, Fuhs A, Schmidt J, Behrens T, Meister A, Wellmann J, Fobker M, Pauleikhoff D, Hense HW: Serum levels of macular carotenoids in relation to age-related maculopathy: the Muenster Aging and Retina Study (MARS). Graefes Arch Clin Exp Ophthalmol. 2005 Oct;243(10):1028-35. Epub 2005 Oct 20. [PubMed:15909159 ]
- Bone RA, Landrum JT, Friedes LM, Gomez CM, Kilburn MD, Menendez E, Vidal I, Wang W: Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res. 1997 Feb;64(2):211-8. [PubMed:9176055 ]
- Chitchumroonchokchai C, Failla ML: Hydrolysis of zeaxanthin esters by carboxyl ester lipase during digestion facilitates micellarization and uptake of the xanthophyll by Caco-2 human intestinal cells. J Nutr. 2006 Mar;136(3):588-94. [PubMed:16484529 ]
- Khachik F: An efficient conversion of (3R,3'R,6'R)-lutein to (3R,3'S,6'R)-lutein (3'-epilutein) and (3R,3'R)-zeaxanthin. J Nat Prod. 2003 Jan;66(1):67-72. [PubMed:12542348 ]
- Hammond BR Jr, Wooten BR, Snodderly DM: Density of the human crystalline lens is related to the macular pigment carotenoids, lutein and zeaxanthin. Optom Vis Sci. 1997 Jul;74(7):499-504. [PubMed:9293517 ]
- Johnson EJ, Hammond BR, Yeum KJ, Qin J, Wang XD, Castaneda C, Snodderly DM, Russell RM: Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am J Clin Nutr. 2000 Jun;71(6):1555-62. [PubMed:10837298 ]
- Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE: The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr. 2002 Mar;132(3):518S-524S. [PubMed:11880585 ]
- Sies H, Stahl W: Non-nutritive bioactive constituents of plants: lycopene, lutein and zeaxanthin. Int J Vitam Nutr Res. 2003 Mar;73(2):95-100. [PubMed:12747216 ]
- Moeller SM, Jacques PF, Blumberg JB: The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J Am Coll Nutr. 2000 Oct;19(5 Suppl):522S-527S. [PubMed:11023002 ]
- Idris EE, Iglesias DJ, Talon M, Borriss R: Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact. 2007 Jun;20(6):619-26. doi: 10.1094/MPMI-20-6-0619. [PubMed:17555270 ]
- Patten CL, Glick BR: Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002 Aug;68(8):3795-801. [PubMed:12147474 ]
|
---|