Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2022-03-07 02:49:24 UTC
HMDB IDHMDB0004949
Secondary Accession Numbers
  • HMDB0000790
  • HMDB00790
  • HMDB04949
Metabolite Identification
Common NameCer(d18:1/16:0)
DescriptionCer(d18:1/16:0), also known as N-hexadecanoyl-sphing-4-enine, is a ceramide (Cer). Ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935 ) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372 ). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/16:0) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached saturated hexadecanoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481 ).
Structure
Data?1591984240
Synonyms
Chemical FormulaC34H67NO3
Average Molecular Weight537.9007
Monoisotopic Molecular Weight537.512095015
IUPAC NameN-[(2S,3R,4E)-1,3-dihydroxyoctadec-4-en-2-yl]hexadecanamide
Traditional NameN-(palmitoyl)-ceramide
CAS Registry Number24696-26-2
SMILES
[H][C@@](CO)(NC(=O)CCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC
InChI Identifier
InChI=1S/C34H67NO3/c1-3-5-7-9-11-13-15-17-19-21-23-25-27-29-33(37)32(31-36)35-34(38)30-28-26-24-22-20-18-16-14-12-10-8-6-4-2/h27,29,32-33,36-37H,3-26,28,30-31H2,1-2H3,(H,35,38)/b29-27+/t32-,33+/m0/s1
InChI KeyYDNKGFDKKRUKPY-TURZORIXSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as long-chain ceramides. These are ceramides bearing a long chain fatty acid.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSphingolipids
Sub ClassCeramides
Direct ParentLong-chain ceramides
Alternative Parents
Substituents
  • Long-chain ceramide
  • Fatty amide
  • N-acyl-amine
  • Fatty acyl
  • Carboxamide group
  • Secondary alcohol
  • Secondary carboxylic acid amide
  • Carboxylic acid derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Alcohol
  • Organic nitrogen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility0Not Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue Locations
  • Brain
  • Epidermis
  • Fibroblasts
  • Intestine
  • Kidney
  • Liver
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Skeletal Muscle
  • Spleen
  • Testis
  • Thyroid Gland
Pathways
Normal Concentrations
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Femaleovarian cancer details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
Associated Disorders and Diseases
Disease References
Ovarian cancer
  1. Gaul DA, Mezencev R, Long TQ, Jones CM, Benigno BB, Gray A, Fernandez FM, McDonald JF: Highly-accurate metabolomic detection of early-stage ovarian cancer. Sci Rep. 2015 Nov 17;5:16351. doi: 10.1038/srep16351. [PubMed:26573008 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB023536
KNApSAcK IDNot Available
Chemspider ID4446677
KEGG Compound IDC00195
BioCyc IDCERAMIDE
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN ID7202
PubChem Compound5283564
PDB ID16C
ChEBI ID72959
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceDuclos, R. I. The total syntheses of D-erythro-sphingosine, N-palmitoylsphingosine (ceramide), and glucosylceramide (cerebroside) via an azidosphingosine analog. Chemistry and Physics of Lipids (2001), 111(2), 111-138.
Material Safety Data Sheet (MSDS)Download (PDF)
General References

Only showing the first 10 proteins. There are 76 proteins in total.

Enzymes

General function:
Involved in acyl-CoA dehydrogenase activity
Specific function:
Not Available
Gene Name:
IVD
Uniprot ID:
P26440
Molecular weight:
43055.325
General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is PA > C-1-P > LPA > S-1-P.
Gene Name:
PPAP2C
Uniprot ID:
O43688
Molecular weight:
32573.435
General function:
Involved in catalytic activity
Specific function:
Broad-specificity phosphohydrolase that dephosphorylates exogenous bioactive glycerolipids and sphingolipids. Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). Pivotal regulator of lysophosphatidic acid (LPA) signaling in the cardiovascular system. Major enzyme responsible of dephosphorylating LPA in platelets, which terminates signaling actions of LPA. May control circulating, and possibly also regulate localized, LPA levels resulting from platelet activation. It has little activity towards ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is LPA > PA > S-1-P > C-1-P. It's down-regulation may contribute to the development of colon adenocarcinoma.
Gene Name:
PPAP2A
Uniprot ID:
O14494
Molecular weight:
32155.715
General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is LPA = PA > C-1-P > S-1-P. May be involved in cell adhesion and in cell-cell interactions.
Gene Name:
PPAP2B
Uniprot ID:
O14495
Molecular weight:
35115.61
General function:
Involved in galactosylceramidase activity
Specific function:
Hydrolyzes the galactose ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide, and monogalactosyldiglyceride. Enzyme with very low activity responsible for the lysosomal catabolism of galactosylceramide, a major lipid in myelin, kidney and epithelial cells of small intestine and colon.
Gene Name:
GALC
Uniprot ID:
P54803
Molecular weight:
77062.86
General function:
Involved in hydrolase activity, hydrolyzing O-glycosyl compounds
Specific function:
LPH splits lactose in the small intestine.
Gene Name:
LCT
Uniprot ID:
P09848
Molecular weight:
218584.77
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
Catalyzes the formation of some glycolipid via the addition of N-acetylgalactosamine (GalNAc) in alpha-1,3-linkage to some substrate. Glycolipids probably serve for adherence of some pathogens
Gene Name:
GBGT1
Uniprot ID:
Q8N5D6
Molecular weight:
40126.9
General function:
Involved in ligase activity
Specific function:
Not Available
Gene Name:
MCCC2
Uniprot ID:
Q9HCC0
Molecular weight:
61332.65
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
MCCC1
Uniprot ID:
Q96RQ3
Molecular weight:
80472.45
General function:
Involved in N-acetylglucosaminylphosphatidylinositol de
Specific function:
Involved in the second step of GPI biosynthesis. De-N-acetylation of N-acetylglucosaminyl-phosphatidylinositol.
Gene Name:
PIGL
Uniprot ID:
Q9Y2B2
Molecular weight:
28530.965

Only showing the first 10 proteins. There are 76 proteins in total.