Hmdb loader
Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2009-02-04 11:48:29 UTC
Update Date2021-09-14 15:47:34 UTC
HMDB IDHMDB0011686
Secondary Accession Numbers
  • HMDB11686
Metabolite Identification
Common Namep-Cresol glucuronide
Descriptionp-Cresol glucuronide is a glucuronide derivative a p-Cresol that is typically excreted in the urine. P-Cresol (the precursor of p-cresol sulfate (PCS) and p-cresol glucuronide (PCG)) is mainly generated as an end product of tyrosine biotransformation by anaerobic intestinal bacteria. During passage through the colonic mucosa and liver, sulfatation and glucuronidation generates p-Cresol sulfate (as the most preponderant metabolite) and p-Cresol glucuronide (at markedly lower concentrations) (PMID: 23826225 ). Cresols are known as methylphenols. Cresols are used to dissolve other chemicals, such as disinfectants and deodorizers. They are also used to make specific chemicals that kill insect pests. Cresol solutions are used as household cleaners and disinfectants such as Lysol. Cresol solutions can also be found in photographic developers. In the past, cresol solutions have been used as antiseptics in surgery, but they have been largely displaced in this role by less toxic compounds. Cresols are found in many foods and in wood and tobacco smoke, crude oil, coal tar, and in brown mixtures such as creosote, cresolene and cresylic acids, which are wood preservatives. Microbes in the soil and water produce cresols when they break down materials in the environment. Most exposures to cresols are at very low levels that are not harmful. When cresols are breathed, ingested, or applied to the skin at very high levels, they can be very harmful. Effects observed in people include irritation and burning of skin, eyes, mouth, and throat; abdominal pain and vomiting. Cresols are also a chemical component found in Sharpie Markers. P-cresol is a major component in pig odor.
Structure
Thumb
Synonyms
Chemical FormulaC13H16O7
Average Molecular Weight284.2619
Monoisotopic Molecular Weight284.089602866
IUPAC Name(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(4-methylphenoxy)oxane-2-carboxylic acid
Traditional Name(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(4-methylphenoxy)oxane-2-carboxylic acid
CAS Registry NumberNot Available
SMILES
CC1=CC=C(O[C@@H]2O[C@@H]([C@@H](O)[C@H](O)[C@H]2O)C(O)=O)C=C1
InChI Identifier
InChI=1S/C13H16O7/c1-6-2-4-7(5-3-6)19-13-10(16)8(14)9(15)11(20-13)12(17)18/h2-5,8-11,13-16H,1H3,(H,17,18)/t8-,9-,10+,11-,13+/m0/s1
InChI KeyJPAUCQAJHLSMQW-XPORZQOISA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentPhenolic glycosides
Alternative Parents
Substituents
  • Phenolic glycoside
  • 1-o-glucuronide
  • O-glucuronide
  • Glucuronic acid or derivatives
  • O-glycosyl compound
  • Phenoxy compound
  • Phenol ether
  • Beta-hydroxy acid
  • Toluene
  • Monocyclic benzene moiety
  • Hydroxy acid
  • Monosaccharide
  • Benzenoid
  • Oxane
  • Pyran
  • Secondary alcohol
  • Oxacycle
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organoheterocyclic compound
  • Acetal
  • Polyol
  • Alcohol
  • Hydrocarbon derivative
  • Organic oxide
  • Carbonyl group
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External DescriptorsNot Available
Ontology
Physiological effect
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Blood
  • Urine
Tissue Locations
  • Kidney
  • Liver
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected and Quantified1.0 +/- 0.7 uMAdult (>18 years old)MaleNormal details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableNormal
      Not Available
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified18.7 +/- 24.3 uMAdult (>18 years old)MaleEnd-stage renal failure details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB028373
KNApSAcK IDNot Available
Chemspider ID135751
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound154035
PDB IDNot Available
ChEBI ID87986
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Liabeuf S, Glorieux G, Lenglet A, Diouf M, Schepers E, Desjardins L, Choukroun G, Vanholder R, Massy ZA: Does p-cresylglucuronide have the same impact on mortality as other protein-bound uremic toxins? PLoS One. 2013 Jun 24;8(6):e67168. doi: 10.1371/journal.pone.0067168. Print 2013. [PubMed:23826225 ]

Enzymes

General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGTs are of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isozyme is active on polyhydroxylated estrogens (such as estriol, 4-hydroxyestrone and 2-hydroxyestriol) and xenobiotics (such as 4-methylumbelliferone, 1-naphthol, 4-nitrophenol, 2-aminophenol, 4-hydroxybiphenyl and menthol). It is capable of 6 alpha-hydroxyglucuronidation of hyodeoxycholic acid.
Gene Name:
UGT2B4
Uniprot ID:
P06133
Molecular weight:
60512.035
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate.
Gene Name:
UGT1A4
Uniprot ID:
P22310
Molecular weight:
60024.535
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. Its unique specificity for 3,4-catechol estrogens and estriol suggests it may play an important role in regulating the level and activity of these potent and active estrogen metabolites. Is also active with androsterone, hyodeoxycholic acid and tetrachlorocatechol (in vitro).
Gene Name:
UGT2B7
Uniprot ID:
P16662
Molecular weight:
60720.15
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform glucuronidates bilirubin IX-alpha to form both the IX-alpha-C8 and IX-alpha-C12 monoconjugates and diconjugate. Is also able to catalyze the glucuronidation of 17beta-estradiol, 17alpha-ethinylestradiol, 1-hydroxypyrene, 4-methylumbelliferone, 1-naphthol, paranitrophenol, scopoletin, and umbelliferone.
Gene Name:
UGT1A1
Uniprot ID:
P22309
Molecular weight:
59590.91
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols.
Gene Name:
UGT1A9
Uniprot ID:
O60656
Molecular weight:
59940.495
General function:
Involved in transferase activity, transferring hexosyl groups
Specific function:
UDPGT is of major importance in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This isoform has specificity for phenols.
Gene Name:
UGT1A6
Uniprot ID:
P19224
Molecular weight:
60750.215