Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2009-11-02 23:54:56 UTC |
---|
Update Date | 2023-05-30 20:55:49 UTC |
---|
HMDB ID | HMDB0013129 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | Glutaconylcarnitine |
---|
Description | Glutaconylcarnitine is an acylcarnitine. More specifically, it is an glutaconic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review (PMID: 35710135 ), acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Glutaconylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine glutaconylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980 ). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. Carnitine acetyltransferase (CrAT, EC:2.3.1.7) is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available (PMID: 35710135 ). |
---|
Structure | OC(=O)C\C=C\C(=O)O[C@@H](CC([O-])=O)C[N+](C)(C)C InChI=1S/C12H19NO6/c1-13(2,3)8-9(7-11(16)17)19-12(18)6-4-5-10(14)15/h4,6,9H,5,7-8H2,1-3H3,(H-,14,15,16,17)/b6-4+/t9-/m0/s1 |
---|
Synonyms | Value | Source |
---|
Glutaconyl-L-carnitine | HMDB |
|
---|
Chemical Formula | C12H19NO6 |
---|
Average Molecular Weight | 273.2824 |
---|
Monoisotopic Molecular Weight | 273.121237345 |
---|
IUPAC Name | (3S)-3-{[(2E)-4-carboxybut-2-enoyl]oxy}-4-(trimethylazaniumyl)butanoate |
---|
Traditional Name | (3S)-3-{[(2E)-4-carboxybut-2-enoyl]oxy}-4-(trimethylammonio)butanoate |
---|
CAS Registry Number | Not Available |
---|
SMILES | OC(=O)C\C=C\C(=O)O[C@@H](CC([O-])=O)C[N+](C)(C)C |
---|
InChI Identifier | InChI=1S/C12H19NO6/c1-13(2,3)8-9(7-11(16)17)19-12(18)6-4-5-10(14)15/h4,6,9H,5,7-8H2,1-3H3,(H-,14,15,16,17)/b6-4+/t9-/m0/s1 |
---|
InChI Key | JXVUHLILXGZLFR-DNQSNQRASA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Fatty Acyls |
---|
Sub Class | Fatty acid esters |
---|
Direct Parent | Acyl carnitines |
---|
Alternative Parents | |
---|
Substituents | - Acyl-carnitine
- Tricarboxylic acid or derivatives
- Quaternary ammonium salt
- Enoate ester
- Tetraalkylammonium salt
- Alpha,beta-unsaturated carboxylic ester
- Carboxylic acid ester
- Carboxylic acid salt
- Carboxylic acid
- Carboxylic acid derivative
- Organic oxide
- Organopnictogen compound
- Organic oxygen compound
- Organooxygen compound
- Organonitrogen compound
- Organic nitrogen compound
- Carbonyl group
- Amine
- Hydrocarbon derivative
- Organic salt
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | Not Available |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatized |
---|
Spectra |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted GC-MS | Predicted GC-MS Spectrum - Glutaconylcarnitine GC-MS (1 TMS) - 70eV, Positive | splash10-00di-9200000000-2add729af098ddd82694 | 2017-10-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Glutaconylcarnitine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Glutaconylcarnitine 10V, Positive-QTOF | splash10-00di-0090000000-d796ba44a440c7170659 | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Glutaconylcarnitine 20V, Positive-QTOF | splash10-0079-9050000000-f8db13805439a7cd8cc3 | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Glutaconylcarnitine 40V, Positive-QTOF | splash10-000i-9000000000-e9262cbaff8cb4ad0ba6 | 2021-09-24 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum |
|
---|
Biological Properties |
---|
Cellular Locations | |
---|
Biospecimen Locations | |
---|
Tissue Locations | Not Available |
---|
Pathways | |
---|
Normal Concentrations |
---|
| |
Blood | Detected and Quantified | 0.02 uM | Adult (>18 years old) | Both | Normal | | details | Blood | Detected and Quantified | 0.005-0.030 uM | Adult (>18 years old) | Both | Normal | | details | Feces | Detected and Quantified | 0.17 +/- 0.07 nmol/g wet feces | Adult (>18 years old) | Both | Normal | | details | Feces | Detected and Quantified | 0.2 +/- 0.09 nmol/g wet feces | Adult (>18 years old) | Both | Normal | | details | Urine | Detected and Quantified | 0.04 (0.01-0.06) umol/mmol creatinine | Adult (>18 years old) | Both | Normal | | details | Urine | Detected and Quantified | 0.04 (0.02-0.05) umol/mmol creatinine | Newborn (0-30 days old) | Both | Normal | | details | Urine | Detected and Quantified | 0.0-0.03 umol/mmol creatinine | Newborn (0-30 days old) | Both | Normal | | details | Urine | Detected and Quantified | 0.01 +/- 0.01 umol/mmol creatinine | Newborn (0-30 days old) | Female | Normal | | details | Urine | Detected and Quantified | 0.02 +/- 0.01 umol/mmol creatinine | Newborn (0-30 days old) | Male | Normal | | details |
|
---|
Abnormal Concentrations |
---|
| |
Blood | Detected and Quantified | 0.0725 (0.1405) uM | Adult (>18 years old) | Female | Pregnancy with fetus having congenital heart defect | | details | Blood | Detected and Quantified | 0.0262 (0.005) uM | Adult (>18 years old) | Female | Pregnancy | | details |
|
---|
Associated Disorders and Diseases |
---|
Disease References | Pregnancy |
---|
- Bahado-Singh RO, Ertl R, Mandal R, Bjorndahl TC, Syngelaki A, Han B, Dong E, Liu PB, Alpay-Savasan Z, Wishart DS, Nicolaides KH: Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol. 2014 Sep;211(3):240.e1-240.e14. doi: 10.1016/j.ajog.2014.03.056. Epub 2014 Apr 1. [PubMed:24704061 ]
|
|
---|
Associated OMIM IDs | None |
---|
External Links |
---|
DrugBank ID | Not Available |
---|
Phenol Explorer Compound ID | Not Available |
---|
FooDB ID | FDB029302 |
---|
KNApSAcK ID | Not Available |
---|
Chemspider ID | Not Available |
---|
KEGG Compound ID | Not Available |
---|
BioCyc ID | Not Available |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | Not Available |
---|
METLIN ID | Not Available |
---|
PubChem Compound | 53481620 |
---|
PDB ID | Not Available |
---|
ChEBI ID | Not Available |
---|
Food Biomarker Ontology | Not Available |
---|
VMH ID | Not Available |
---|
MarkerDB ID | Not Available |
---|
Good Scents ID | Not Available |
---|
References |
---|
Synthesis Reference | Not Available |
---|
Material Safety Data Sheet (MSDS) | Not Available |
---|
General References | - Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- Violante S, Ijlst L, Ruiter J, Koster J, van Lenthe H, Duran M, de Almeida IT, Wanders RJ, Houten SM, Ventura FV: Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Biochim Biophys Acta. 2013 Jun;1832(6):773-9. doi: 10.1016/j.bbadis.2013.02.012. Epub 2013 Feb 24. [PubMed:23485643 ]
- FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
- Makarova E, Makrecka-Kuka M, Vilks K, Volska K, Sevostjanovs E, Grinberga S, Zarkova-Malkova O, Dambrova M, Liepinsh E: Decreases in Circulating Concentrations of Long-Chain Acylcarnitines and Free Fatty Acids During the Glucose Tolerance Test Represent Tissue-Specific Insulin Sensitivity. Front Endocrinol (Lausanne). 2019 Dec 17;10:870. doi: 10.3389/fendo.2019.00870. eCollection 2019. [PubMed:31920980 ]
- Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB: Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022 Jul;74(3):506-551. doi: 10.1124/pharmrev.121.000408. [PubMed:35710135 ]
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
---|