Hmdb loader
Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-06 15:16:51 UTC
Update Date2022-03-07 02:51:50 UTC
HMDB IDHMDB0015051
Secondary Accession Numbers
  • HMDB15051
Metabolite Identification
Common NameAmantadine
DescriptionAmantadine, also known as 1-adamantanamine or 1-aminoadamantane, belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group. Amantadine is a drug which is used for the chemoprophylaxis, prophylaxis, and treatment of signs and symptoms of infection caused by various strains of influenza a virus. also for the treatment of parkinsonism and drug-induced extrapyramidal reactions. The mechanism of its antiparkinsonic effect is not fully understood, but it appears to be releasing dopamine from the nerve endings of the brain cells, together with stimulation of norepinephrine response. The mechanisms of its effects in movement disorders are not well understood but probably reflect an increase in synthesis and release of dopamine, with perhaps some inhibition of dopamine uptake. Amantadine is a very strong basic compound (based on its pKa). In humans, amantadine is involved in loratadine h1-antihistamine action. Amantadine is a potentially toxic compound. Pulmonary edema and respiratory distress (including ARDS) have been reported.
Structure
Thumb
Synonyms
Chemical FormulaC10H17N
Average Molecular Weight151.2487
Monoisotopic Molecular Weight151.136099549
IUPAC Nameadamantan-1-amine
Traditional Nameamantadine
CAS Registry Number768-94-5
SMILES
NC12CC3CC(CC(C3)C1)C2
InChI Identifier
InChI=1S/C10H17N/c11-10-4-7-1-8(5-10)3-9(2-7)6-10/h7-9H,1-6,11H2
InChI KeyDKNWSYNQZKUICI-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group.
KingdomOrganic compounds
Super ClassOrganic nitrogen compounds
ClassOrganonitrogen compounds
Sub ClassAmines
Direct ParentMonoalkylamines
Alternative Parents
Substituents
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Primary aliphatic amine
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point180 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.085 g/LNot Available
LogP2.3Not Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M+H]+Not Available138.594http://allccs.zhulab.cn/database/detail?ID=AllCCS00000698
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00915 details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00915 details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiospecimenValueOriginal ageOriginal sexOriginal conditionComments
Blood0.000 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0.000 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00915
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID2045
KEGG Compound IDC06818
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkAmantadine
METLIN IDNot Available
PubChem Compound2130
PDB IDNot Available
ChEBI ID2618
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
Catalyzes the oxidative deamination of biogenic and xenobiotic amines and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. MAOB preferentially degrades benzylamine and phenylethylamine.
Gene Name:
MAOB
Uniprot ID:
P27338
Molecular weight:
58762.475
References
  1. Wesemann W, Ekenna O: Effect of 1-aminoadamantanes on the MAO activity in brain, liver, and kidney of the rat. Arzneimittelforschung. 1982;32(10):1241-3. [PubMed:6891223 ]
General function:
Involved in carboxy-lyase activity
Specific function:
Catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (DOPA) to dopamine, L-5-hydroxytryptophan to serotonin and L-tryptophan to tryptamine.
Gene Name:
DDC
Uniprot ID:
P20711
Molecular weight:
53893.755
References
  1. Li XM, Juorio AV, Qi J, Boulton AA: Amantadine increases aromatic L-amino acid decarboxylase mRNA in PC12 cells. J Neurosci Res. 1998 Aug 15;53(4):490-3. [PubMed:9710269 ]
  2. Fisher A, Biggs CS, Starr MS: Effects of glutamate antagonists on the activity of aromatic L-amino acid decarboxylase. Amino Acids. 1998;14(1-3):43-9. [PubMed:9871440 ]
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
This is one of the five types (D1 to D5) of receptors for dopamine. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase
Gene Name:
DRD2
Uniprot ID:
P14416
Molecular weight:
50618.9
References
  1. Tomitaka S, Hashimoto K, Narita N, Minabe Y, Tamura A: Amantadine induces c-fos in rat striatum: reversal with dopamine D1 and NMDA receptor antagonists. Eur J Pharmacol. 1995 Oct 16;285(2):207-11. [PubMed:8566141 ]
  2. Ameri A: Effects of the Aconitum alkaloid songorine on synaptic transmission and paired-pulse facilitation of CA1 pyramidal cells in rat hippocampal slices. Br J Pharmacol. 1998 Oct;125(3):461-8. [PubMed:9806328 ]
  3. Hesselink MB, De Boer AG, Breimer DD, Danysz W: Adaptations of NMDA and dopamine D2, but not of muscarinic receptors following 14 days administration of uncompetitive NMDA receptor antagonists. J Neural Transm (Vienna). 1999;106(5-6):409-21. [PubMed:10443547 ]
  4. Cousins MS, Carriero DL, Salamone JD: Tremulous jaw movements induced by the acetylcholinesterase inhibitor tacrine: effects of antiparkinsonian drugs. Eur J Pharmacol. 1997 Mar 19;322(2-3):137-45. [PubMed:9098680 ]
General function:
Involved in ionotropic glutamate receptor activity
Specific function:
NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. May play a role in the development of dendritic spines. May play a role in PPP2CB-NMDAR mediated signaling mechanism
Gene Name:
GRIN3A
Uniprot ID:
Q8TCU5
Molecular weight:
125464.1
References
  1. Blanpied TA, Clarke RJ, Johnson JW: Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci. 2005 Mar 30;25(13):3312-22. [PubMed:15800186 ]
  2. Hesselink MB, De Boer AG, Breimer DD, Danysz W: Adaptations of NMDA and dopamine D2, but not of muscarinic receptors following 14 days administration of uncompetitive NMDA receptor antagonists. J Neural Transm (Vienna). 1999;106(5-6):409-21. [PubMed:10443547 ]

Transporters

General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Mahar Doan KM, Humphreys JE, Webster LO, Wring SA, Shampine LJ, Serabjit-Singh CJ, Adkison KK, Polli JW: Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002 Dec;303(3):1029-37. [PubMed:12438524 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Translocates a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN), 4-(4-(dimethylamino)styryl)- N-methylpyridinium (ASP), the endogenous compounds choline, guanidine, histamine, epinephrine, adrenaline, noradrenaline and dopamine, and the drugs quinine, and metformin. The transport of organic cations is inhibited by a broad array of compounds like tetramethylammonium (TMA), cocaine, lidocaine, NMDA receptor antagonists, atropine, prazosin, cimetidine, TEA and NMN, guanidine, cimetidine, choline, procainamide, quinine, tetrabutylammonium, and tetrapentylammonium. Translocates organic cations in an electrogenic and pH-independent manner. Translocates organic cations across the plasma membrane in both directions. Transports the polyamines spermine and spermidine. Transports pramipexole across the basolateral membrane of the proximal tubular epithelial cells. The choline transport is activated by MMTS. Regulated by various intracellular signaling pathways including inhibition by protein kinase A activation, and endogenously activation by the calmodulin complex, the calmodulin- dependent kinase II and LCK tyrosine kinase
Gene Name:
SLC22A1
Uniprot ID:
O15245
Molecular weight:
61187.4
References
  1. Bednarczyk D, Ekins S, Wikel JH, Wright SH: Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003 Mar;63(3):489-98. [PubMed:12606755 ]
  2. Zhang L, Schaner ME, Giacomini KM: Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther. 1998 Jul;286(1):354-61. [PubMed:9655880 ]
  3. Goralski KB, Lou G, Prowse MT, Gorboulev V, Volk C, Koepsell H, Sitar DS: The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002 Dec;303(3):959-68. [PubMed:12438515 ]
  4. Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I: Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos. 2005 Apr;33(4):495-9. Epub 2005 Jan 7. [PubMed:15640376 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Mediates tubular uptake of organic compounds from circulation. Mediates the influx of agmatine, dopamine, noradrenaline (norepinephrine), serotonin, choline, famotidine, ranitidine, histamin, creatinine, amantadine, memantine, acriflavine, 4-[4-(dimethylamino)-styryl]-N-methylpyridinium ASP, amiloride, metformin, N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, cisplatin and oxaliplatin. Cisplatin may develop a nephrotoxic action. Transport of creatinine is inhibited by fluoroquinolones such as DX-619 and LVFX. This transporter is a major determinant of the anticancer activity of oxaliplatin and may contribute to antitumor specificity
Gene Name:
SLC22A2
Uniprot ID:
O15244
Molecular weight:
62564.0
References
  1. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K: cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002 Jul;13(7):1703-10. [PubMed:12089365 ]
  2. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H: Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998 Aug;54(2):342-52. [PubMed:9687576 ]
  3. Goralski KB, Lou G, Prowse MT, Gorboulev V, Volk C, Koepsell H, Sitar DS: The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002 Dec;303(3):959-68. [PubMed:12438515 ]
  4. Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I: Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos. 2005 Apr;33(4):495-9. Epub 2005 Jan 7. [PubMed:15640376 ]