Hmdb loader
Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-06 15:16:52 UTC
Update Date2022-03-07 02:51:59 UTC
HMDB IDHMDB0015440
Secondary Accession Numbers
  • HMDB15440
Metabolite Identification
Common NameAmobarbital
DescriptionAmobarbital is only found in individuals that have used or taken this drug. It is a barbiturate with hypnotic and sedative properties (but not antianxiety). Adverse effects are mainly a consequence of dose-related CNS depression and the risk of dependence with continued use is high. (From Martindale, The Extra Pharmacopoeia, 30th ed, p565)Amobarbital (like all barbiturates) works by binding to the GABAA receptor at either the alpha or the beta sub unit. These are binding sites that are distinct from GABA itself and also distinct from the benzodiazepine binding site. Like benzodiazepines, barbiturates potentiate the effect of GABA at this receptor. This GABAA receptor binding decreases input resistance, depresses burst and tonic firing, especially in ventrobasal and intralaminar neurons, while at the same time increasing burst duration and mean conductance at individual chloride channels; this increases both the amplitude and decay time of inhibitory postsynaptic currents. In addition to this GABA-ergic effect, barbiturates also block the AMPA receptor, a subtype of glutamate receptor. Glutamate is the principal excitatory neurotransmitter in the mammalian CNS. Amobarbital also appears to bind neuronal nicotinic acetylcholine receptors.
Structure
Data?1582753298
Synonyms
Chemical FormulaC11H18N2O3
Average Molecular Weight226.2722
Monoisotopic Molecular Weight226.131742452
IUPAC Name5-ethyl-5-(3-methylbutyl)-1,3-diazinane-2,4,6-trione
Traditional Nameamobarbital
CAS Registry Number57-43-2
SMILES
CCC1(CCC(C)C)C(=O)NC(=O)NC1=O
InChI Identifier
InChI=1S/C11H18N2O3/c1-4-11(6-5-7(2)3)8(14)12-10(16)13-9(11)15/h7H,4-6H2,1-3H3,(H2,12,13,14,15,16)
InChI KeyVIROVYVQCGLCII-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as pyrimidones. Pyrimidones are compounds that contain a pyrimidine ring, which bears a ketone. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassDiazines
Sub ClassPyrimidines and pyrimidine derivatives
Direct ParentPyrimidones
Alternative Parents
Substituents
  • Pyrimidone
  • Hydropyrimidine
  • 2,5-dihydropyrimidine
  • Carbonic acid derivative
  • Propargyl-type 1,3-dipolar organic compound
  • Organic 1,3-dipolar compound
  • Azacycle
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.9 g/LNot Available
LogP2.07HANSCH,C ET AL. (1995)
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Membrane
Biospecimen Locations
  • Blood
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01351 details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01351 details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiospecimenValueOriginal ageOriginal sexOriginal conditionComments
Blood0.000 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0.000 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01351
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID2079
KEGG Compound IDC07536
BioCyc IDCPD-5742
BiGG IDNot Available
Wikipedia LinkAmobarbital
METLIN IDNot Available
PubChem Compound2164
PDB IDNot Available
ChEBI ID2673
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Tang BK, Kalow W, Grey AA: Amobarbital metabolism in man: N-glucoside formation. Res Commun Chem Pathol Pharmacol. 1978 Jul;21(1):45-53. [PubMed:684279 ]
  2. McCall WV: The addition of intravenous caffeine during an amobarbital interview. J Psychiatry Neurosci. 1992 Nov;17(5):195-7. [PubMed:1489761 ]
  3. Soine PJ, Soine WH: High-performance liquid chromatographic determination of the diastereomers of 1-(beta-D-glucopyranosyl)amobarbital in urine. J Chromatogr. 1987 Nov 27;422:309-14. [PubMed:3437019 ]
  4. Maynert EW: The alcoholic metabolites of pentobarbital and amobarbital in man. J Pharmacol Exp Ther. 1965 Oct;150(1):118-21. [PubMed:5855308 ]
  5. Kim HS, Wan X, Mathers DA, Puil E: Selective GABA-receptor actions of amobarbital on thalamic neurons. Br J Pharmacol. 2004 Oct;143(4):485-94. Epub 2004 Sep 20. [PubMed:15381635 ]

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Exhibits a high coumarin 7-hydroxylase activity. Can act in the hydroxylation of the anti-cancer drugs cyclophosphamide and ifosphamide. Competent in the metabolic activation of aflatoxin B1. Constitutes the major nicotine C-oxidase. Acts as a 1,4-cineole 2-exo-monooxygenase. Possesses low phenacetin O-deethylation activity.
Gene Name:
CYP2A6
Uniprot ID:
P11509
Molecular weight:
56517.005
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in ionotropic glutamate receptor activity
Specific function:
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L- glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. May be involved in the transmission of light information from the retina to the hypothalamus. Modulates cell surface expression of NETO2
Gene Name:
GRIK2
Uniprot ID:
Q13002
Molecular weight:
102582.5
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
General function:
Involved in ionotropic glutamate receptor activity
Specific function:
Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L- glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist
Gene Name:
GRIA2
Uniprot ID:
P42262
Molecular weight:
98820.3
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular weight:
51801.4
References
  1. Whiting PJ: The GABAA receptor gene family: new opportunities for drug development. Curr Opin Drug Discov Devel. 2003 Sep;6(5):648-57. [PubMed:14579514 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
  3. Krasowski MD, Harrison NL: General anaesthetic actions on ligand-gated ion channels. Cell Mol Life Sci. 1999 Aug 15;55(10):1278-303. [PubMed:10487207 ]
  4. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  5. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [PubMed:11752352 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular weight:
51325.9
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular weight:
55164.1
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular weight:
61622.6
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular weight:
52145.6
References
  1. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]
  2. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular weight:
51023.7
References
  1. Mehta AK, Ticku MK: An update on GABAA receptors. Brain Res Brain Res Rev. 1999 Apr;29(2-3):196-217. [PubMed:10209232 ]
  2. Yamakura T, Bertaccini E, Trudell JR, Harris RA: Anesthetics and ion channels: molecular models and sites of action. Annu Rev Pharmacol Toxicol. 2001;41:23-51. [PubMed:11264449 ]