Hmdb loader
Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-02-21 17:14:39 UTC
HMDB IDHMDB0000250
Secondary Accession Numbers
  • HMDB00250
Metabolite Identification
Common NamePyrophosphate
DescriptionThe anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5'-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout.
Structure
Thumb
Synonyms
ValueSource
[(HO)2P(O)OP(O)(OH)2]ChEBI
Acide diphosphoriqueChEBI
DiphosphorsaeureChEBI
H4P2O7ChEBI
Pyrophosphoric acidChEBI
PyrophosphorsaeureChEBI
Diphosphoric acidKegg
PPiKegg
DiphosphateGenerator
PYROphosphATEChEBI
Na4p2O7MeSH, HMDB
PPi CPDMeSH, HMDB
Chemical FormulaH4O7P2
Average Molecular Weight177.9751
Monoisotopic Molecular Weight177.943225506
IUPAC Name(phosphonooxy)phosphonic acid
Traditional Namepyrophosphoric acid
CAS Registry Number14000-31-8
SMILES
OP(O)(=O)OP(O)(O)=O
InChI Identifier
InChI=1S/H4O7P2/c1-8(2,3)7-9(4,5)6/h(H2,1,2,3)(H2,4,5,6)
InChI KeyXPPKVPWEQAFLFU-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of inorganic compounds known as non-metal pyrophosphates. These are inorganic non-metallic compounds containing a pyrophosphate as its largest oxoanion.
KingdomInorganic compounds
Super ClassHomogeneous non-metal compounds
ClassNon-metal oxoanionic compounds
Sub ClassNon-metal pyrophosphates
Direct ParentNon-metal pyrophosphates
Alternative Parents
Substituents
  • Non-metal pyrophosphate
  • Inorganic oxide
Molecular FrameworkNot Available
External Descriptors
Ontology
Physiological effectNot Available
DispositionNot Available
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point61 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
logP-1.4ChemAxon
pKa (Strongest Acidic)1.7ChemAxon
Physiological Charge-3ChemAxon
Hydrogen Acceptor Count6ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area124.29 ŲChemAxon
Rotatable Bond Count2ChemAxon
Refractivity25.52 m³·mol⁻¹ChemAxon
Polarizability10.28 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Mitochondria
  • Nucleus
  • Endoplasmic reticulum
  • Peroxisome
Biospecimen Locations
  • Blood
  • Saliva
  • Urine
Tissue Locations
  • Epidermis
  • Fibroblasts
  • Intestine
  • Neuron
  • Platelet
  • Prostate
  • Skeletal Muscle
  • Testis
Pathways
Normal Concentrations
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothBladder cancer details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB04160
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDC00019561
Chemspider IDNot Available
KEGG Compound IDC00013
BioCyc IDPPI
BiGG IDNot Available
Wikipedia LinkPyrophosphate
METLIN IDNot Available
PubChem Compound1023
PDB IDNot Available
ChEBI ID29888
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceDittmer, Donald C.; Silverstein, V. Opshelor. Production of pyrophosphate from S-n-butyl phosphorothioate. Journal of Organic Chemistry (1961), 26 4706-7.
Material Safety Data Sheet (MSDS)Not Available
General References

Only showing the first 10 proteins. There are 351 proteins in total.

Enzymes

General function:
Involved in acetate-CoA ligase activity
Specific function:
Activates acetate so that it can be used for lipid synthesis or for energy generation.
Gene Name:
ACSS2
Uniprot ID:
Q9NR19
Molecular weight:
78579.11
Reactions
Adenosine triphosphate + Acetic acid + Coenzyme A → Adenosine monophosphate + Pyrophosphate + Acetyl-CoAdetails
Adenosine triphosphate + Acetic acid → Pyrophosphate + Acetyl adenylatedetails
Adenosine triphosphate + Propionic acid → Pyrophosphate + Propinol adenylatedetails
General function:
Involved in acetate-CoA ligase activity
Specific function:
Important for maintaining normal body temperature during fasting and for energy homeostasis. Essential for energy expenditure under ketogenic conditions (By similarity). Converts acetate to acetyl-CoA so that it can be used for oxidation through the tricarboxylic cycle to produce ATP and CO(2).
Gene Name:
ACSS1
Uniprot ID:
Q9NUB1
Molecular weight:
74625.88
Reactions
Adenosine triphosphate + Acetic acid + Coenzyme A → Adenosine monophosphate + Pyrophosphate + Acetyl-CoAdetails
Adenosine triphosphate + Acetic acid → Pyrophosphate + Acetyl adenylatedetails
Adenosine triphosphate + Propionic acid → Pyrophosphate + Propinol adenylatedetails
General function:
Involved in arylesterase activity
Specific function:
Has low activity towards the organophosphate paraxon and aromatic carboxylic acid esters. Rapidly hydrolyzes lactones such as statin prodrugs (e.g. lovastatin). Hydrolyzes aromatic lactones and 5- or 6-member ring lactones with aliphatic substituents but not simple lactones or those with polar substituents.
Gene Name:
PON3
Uniprot ID:
Q15166
Molecular weight:
39607.185
General function:
Involved in fucose-1-phosphate guanylyltransferase acti
Specific function:
Catalyzes the formation of GDP-L-fucose from GTP and L-fucose-1-phosphate. Functions as a salvage pathway to reutilize L-fucose arising from the turnover of glycoproteins and glycolipids.
Gene Name:
FPGT
Uniprot ID:
O14772
Molecular weight:
37630.405
Reactions
Guanosine triphosphate + Fucose 1-phosphate → Pyrophosphate + GDP-L-fucosedetails
General function:
Involved in transferase activity
Specific function:
Not Available
Gene Name:
FDFT1
Uniprot ID:
P37268
Molecular weight:
48114.87
Reactions
Farnesyl pyrophosphate + NAD(P)H → Squalene + Pyrophosphate + NAD(P)(+)details
Farnesyl pyrophosphate → Pyrophosphate + Presqualene diphosphatedetails
Presqualene diphosphate + NADPH + Hydrogen Ion → Pyrophosphate + Squalene + NADPdetails
Farnesyl pyrophosphate + NADPH + Hydrogen Ion → Squalene + Pyrophosphate + NADPdetails
General function:
Involved in nucleotide binding
Specific function:
Not Available
Gene Name:
FARSA
Uniprot ID:
Q9Y285
Molecular weight:
57563.225
Reactions
Adenosine triphosphate + Phenylalanine + tRNA(Phe) → Adenosine monophosphate + Pyrophosphate + L-phenylalanyl-tRNA(Phe)details
Adenosine triphosphate + Phenylalanine + tRNA(Phe) → Adenosine monophosphate + Pyrophosphate + L-Phenylalanyl-tRNA(Phe)details
General function:
Involved in nucleotide binding
Specific function:
Catalyzes direct attachment of p-Tyr (Tyr) to tRNAPhe. Permits also, with a lower efficiency, the attachment of m-Tyr to tRNAPhe, thereby opening the way for delivery of the misacylated tRNA to the ribosome and incorporation of ROS-damaged amino acid into proteins.
Gene Name:
FARS2
Uniprot ID:
O95363
Molecular weight:
52356.21
Reactions
Adenosine triphosphate + Phenylalanine + tRNA(Phe) → Adenosine monophosphate + Pyrophosphate + L-phenylalanyl-tRNA(Phe)details
Adenosine triphosphate + Phenylalanine + tRNA(Phe) → Adenosine monophosphate + Pyrophosphate + L-Phenylalanyl-tRNA(Phe)details
General function:
Involved in oxidoreductase activity
Specific function:
Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism.
Gene Name:
ALDH7A1
Uniprot ID:
P49419
Molecular weight:
58486.74
Reactions
Aminoadipic acid + Adenosine triphosphate → L-2-Aminoadipate adenylate + Pyrophosphatedetails
General function:
Involved in amidophosphoribosyltransferase activity
Specific function:
Not Available
Gene Name:
PPAT
Uniprot ID:
Q06203
Molecular weight:
57398.52
Reactions
5-Phosphoribosylamine + Pyrophosphate + Glutamic acid → Glutamine + Phosphoribosyl pyrophosphate + Waterdetails
General function:
Involved in nucleotidyltransferase activity
Specific function:
Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency. Can use triazofurin monophosphate (TrMP) as substrate. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity, prefers NAD(+) and NAAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively. Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NAADP(+). Protects against axonal degeneration following mechanical or toxic insults.
Gene Name:
NMNAT1
Uniprot ID:
Q9HAN9
Molecular weight:
31932.22
Reactions
Adenosine triphosphate + Nicotinamide ribotide → Pyrophosphate + NADdetails
Adenosine triphosphate + beta-nicotinate-D-ribonucleotide → Pyrophosphate + Nicotinic acid adenine dinucleotidedetails
Adenosine triphosphate + Nicotinic acid mononucleotide → Pyrophosphate + Nicotinic acid adenine dinucleotidedetails

Only showing the first 10 proteins. There are 351 proteins in total.