Hmdb loader
Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected but not Quantified
Creation Date2012-09-06 21:03:00 UTC
Update Date2021-09-14 15:46:19 UTC
HMDB IDHMDB0028922
Secondary Accession Numbers
  • HMDB28922
Metabolite Identification
Common NameLeucylalanine
DescriptionLeucylalanine, also known as L-A or leu-ala, belongs to the class of organic compounds known as peptides. Peptides are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another. Leucylalanine has been detected, but not quantified in, a few different foods, such as anatidaes (Anatidae), chickens (Gallus gallus), and domestic pigs (Sus scrofa domestica). This could make leucylalanine a potential biomarker for the consumption of these foods. Leucylalanine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on Leucylalanine.
Structure
Data?1582753355
Synonyms
ValueSource
L-AChEBI
L-Leu-L-alaChEBI
LAChEBI
Leucyl-alanineHMDB
L-a DipeptideHMDB
L-Leucyl-L-alanineHMDB
LA dipeptideHMDB
Leu-alaHMDB
Leucine alanine dipeptideHMDB
Leucine-alanine dipeptideHMDB
N-L-Leucyl-L-alanineHMDB
N-LeucylalanineHMDB
LeucylalanineChEBI
Chemical FormulaC9H18N2O3
Average Molecular Weight202.254
Monoisotopic Molecular Weight202.131742448
IUPAC Name(2S)-2-[(2S)-2-amino-4-methylpentanamido]propanoic acid
Traditional Name(2S)-2-[(2S)-2-amino-4-methylpentanamido]propanoic acid
CAS Registry Number7298-84-2
SMILES
CC(C)C[C@H](N)C(=O)N[C@@H](C)C(O)=O
InChI Identifier
InChI=1S/C9H18N2O3/c1-5(2)4-7(10)8(12)11-6(3)9(13)14/h5-7H,4,10H2,1-3H3,(H,11,12)(H,13,14)/t6-,7-/m0/s1
InChI KeyHSQGMTRYSIHDAC-BQBZGAKWSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as peptides. Peptides are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentPeptides
Alternative Parents
Substituents
  • Alpha peptide
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alanine or derivatives
  • Alpha-amino acid or derivatives
  • Amino acid or derivatives
  • Amino acid
  • Carboximidic acid
  • Carboximidic acid derivative
  • Carboxylic acid
  • Organic 1,3-dipolar compound
  • Propargyl-type 1,3-dipolar organic compound
  • Monocarboxylic acid or derivatives
  • Organic nitrogen compound
  • Organonitrogen compound
  • Organooxygen compound
  • Primary amine
  • Primary aliphatic amine
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Carbonyl group
  • Organic oxygen compound
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP-2.13Extrapolated
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Feces
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB111950
KNApSAcK IDNot Available
Chemspider ID73739
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound81721
PDB IDNot Available
ChEBI ID73527
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Hong L, Turner RT 3rd, Koelsch G, Shin D, Ghosh AK, Tang J: Crystal structure of memapsin 2 (beta-secretase) in complex with an inhibitor OM00-3. Biochemistry. 2002 Sep 10;41(36):10963-7. [PubMed:12206667 ]
  2. Nath M, Pokharia S, Eng G, Song X, Kumar A: New triorganotin (IV) derivatives of dipeptides as models for metal-protein interactions: synthesis, structural characterization and biological studies. Spectrochim Acta A Mol Biomol Spectrosc. 2006 Jan;63(1):66-75. Epub 2005 Jun 9. [PubMed:15950528 ]
  3. Wang T, Simbulan-Rosenthal CM, Smulson ME, Chock PB, Yang DC: Polyubiquitylation of PARP-1 through ubiquitin K48 is modulated by activated DNA, NAD+, and dipeptides. J Cell Biochem. 2008 May 1;104(1):318-28. [PubMed:18041763 ]
  4. Kilic N, Kustimur S, Arslan S, Aldemir H: Fluorometric determination of acid proteinase activity in vulvovaginal candidosis. Mycoses. 1996 Sep-Oct;39(9-10):347-51. [PubMed:9009656 ]
  5. Krishnakumar SS, London E: Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. J Mol Biol. 2007 Nov 30;374(3):671-87. Epub 2007 Sep 20. [PubMed:17950311 ]
  6. Bedner M, MacCrehan WA, Helz GR: Making chlorine greener: investigation of alternatives to sulfite for dechlorination. Water Res. 2004 May;38(10):2505-14. [PubMed:15159154 ]
  7. Turner RT 3rd, Koelsch G, Hong L, Castanheira P, Ermolieff J, Ghosh AK, Tang J: Subsite specificity of memapsin 2 (beta-secretase): implications for inhibitor design. Biochemistry. 2001 Aug 28;40(34):10001-6. [PubMed:11513577 ]