Hmdb loader
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2017-03-16 03:44:48 UTC
Update Date2022-03-07 03:17:53 UTC
HMDB IDHMDB0062340
Secondary Accession Numbers
  • HMDB62340
Metabolite Identification
Common NameN-Palmitoyl tyrosine
DescriptionN-palmitoyl tyrosine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Tyrosine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl tyrosine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl tyrosine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504 ). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998 ; PMID: 25136293 ; PMID: 28854168 ).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168 ). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153 ). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293 ). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167 ). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168 ). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Structure
Data?1563866298
SynonymsNot Available
Chemical FormulaC25H41NO4
Average Molecular Weight419.606
Monoisotopic Molecular Weight419.303558804
IUPAC Name(2S)-2-[(1-hydroxyhexadecylidene)amino]-3-(4-hydroxyphenyl)propanoic acid
Traditional Name(2S)-2-[(1-hydroxyhexadecylidene)amino]-3-(4-hydroxyphenyl)propanoic acid
CAS Registry NumberNot Available
SMILES
[H][C@@](CC1=CC=C(O)C=C1)(N=C(O)CCCCCCCCCCCCCCC)C(O)=O
InChI Identifier
InChI=1S/C25H41NO4/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-24(28)26-23(25(29)30)20-21-16-18-22(27)19-17-21/h16-19,23,27H,2-15,20H2,1H3,(H,26,28)(H,29,30)/t23-/m0/s1
InChI KeyIPAZGTSTZYXZAT-QHCPKHFHSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as tyrosine and derivatives. Tyrosine and derivatives are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentTyrosine and derivatives
Alternative Parents
Substituents
  • Tyrosine or derivatives
  • Phenylalanine or derivatives
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • N-acyl-l-alpha-amino acid
  • 3-phenylpropanoic-acid
  • Amphetamine or derivatives
  • 1-hydroxy-2-unsubstituted benzenoid
  • Phenol
  • Monocyclic benzene moiety
  • Fatty amide
  • N-acyl-amine
  • Fatty acyl
  • Benzenoid
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Organonitrogen compound
  • Organic oxide
  • Organic oxygen compound
  • Organic nitrogen compound
  • Organooxygen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
DispositionNot Available
ProcessNot Available
RoleNot Available
Physical Properties
StateNot Available
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.00055 g/lALOGPS
LogP6.71ALOGPS
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
logP6.64ALOGPS
logP7.89ChemAxon
logS-5.9ALOGPS
pKa (Strongest Acidic)3.91ChemAxon
pKa (Strongest Basic)1.34ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area90.12 ŲChemAxon
Rotatable Bond Count18ChemAxon
Refractivity121.5 m³·mol⁻¹ChemAxon
Polarizability51.38 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+206.75331661259
DarkChem[M-H]-208.38631661259
DeepCCS[M+H]+196.93130932474
DeepCCS[M-H]-194.57330932474
DeepCCS[M-2H]-228.31930932474
DeepCCS[M+Na]+203.54630932474
AllCCS[M+H]+210.032859911
AllCCS[M+H-H2O]+208.132859911
AllCCS[M+NH4]+211.832859911
AllCCS[M+Na]+212.332859911
AllCCS[M-H]-204.032859911
AllCCS[M+Na-2H]-206.432859911
AllCCS[M+HCOO]-209.132859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
N-Palmitoyl tyrosine[H][C@@](CC1=CC=C(O)C=C1)(N=C(O)CCCCCCCCCCCCCCC)C(O)=O4304.8Standard polar33892256
N-Palmitoyl tyrosine[H][C@@](CC1=CC=C(O)C=C1)(N=C(O)CCCCCCCCCCCCCCC)C(O)=O3069.6Standard non polar33892256
N-Palmitoyl tyrosine[H][C@@](CC1=CC=C(O)C=C1)(N=C(O)CCCCCCCCCCCCCCC)C(O)=O3410.9Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
N-Palmitoyl tyrosine,1TMS,isomer #1CCCCCCCCCCCCCCCC(O)=N[C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O3533.4Semi standard non polar33892256
N-Palmitoyl tyrosine,1TMS,isomer #2CCCCCCCCCCCCCCCC(=N[C@@H](CC1=CC=C(O)C=C1)C(=O)O)O[Si](C)(C)C3453.9Semi standard non polar33892256
N-Palmitoyl tyrosine,1TMS,isomer #3CCCCCCCCCCCCCCCC(O)=N[C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C3414.2Semi standard non polar33892256
N-Palmitoyl tyrosine,2TMS,isomer #1CCCCCCCCCCCCCCCC(=N[C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O)O[Si](C)(C)C3412.5Semi standard non polar33892256
N-Palmitoyl tyrosine,2TMS,isomer #2CCCCCCCCCCCCCCCC(O)=N[C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C3398.1Semi standard non polar33892256
N-Palmitoyl tyrosine,2TMS,isomer #3CCCCCCCCCCCCCCCC(=N[C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C)O[Si](C)(C)C3363.8Semi standard non polar33892256
N-Palmitoyl tyrosine,3TMS,isomer #1CCCCCCCCCCCCCCCC(=N[C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C)O[Si](C)(C)C3401.4Semi standard non polar33892256
N-Palmitoyl tyrosine,1TBDMS,isomer #1CCCCCCCCCCCCCCCC(O)=N[C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O3780.3Semi standard non polar33892256
N-Palmitoyl tyrosine,1TBDMS,isomer #2CCCCCCCCCCCCCCCC(=N[C@@H](CC1=CC=C(O)C=C1)C(=O)O)O[Si](C)(C)C(C)(C)C3689.6Semi standard non polar33892256
N-Palmitoyl tyrosine,1TBDMS,isomer #3CCCCCCCCCCCCCCCC(O)=N[C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C(C)(C)C3674.2Semi standard non polar33892256
N-Palmitoyl tyrosine,2TBDMS,isomer #1CCCCCCCCCCCCCCCC(=N[C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O)O[Si](C)(C)C(C)(C)C3919.3Semi standard non polar33892256
N-Palmitoyl tyrosine,2TBDMS,isomer #2CCCCCCCCCCCCCCCC(O)=N[C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C3933.3Semi standard non polar33892256
N-Palmitoyl tyrosine,2TBDMS,isomer #3CCCCCCCCCCCCCCCC(=N[C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3839.3Semi standard non polar33892256
N-Palmitoyl tyrosine,3TBDMS,isomer #1CCCCCCCCCCCCCCCC(=N[C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C4121.3Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - N-Palmitoyl tyrosine GC-MS (Non-derivatized) - 70eV, Positivesplash10-05i3-7956000000-931144449da276653aab2017-09-20Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Palmitoyl tyrosine GC-MS (3 TMS) - 70eV, Positivesplash10-00xr-7500296000-2595166889a5b92faf712017-10-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Palmitoyl tyrosine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 10V, Positive-QTOFsplash10-0fl0-0902700000-9216070cebbb78a51d4f2017-10-06Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 20V, Positive-QTOFsplash10-001i-0920000000-4a2a76281a91e01c12d52017-10-06Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 40V, Positive-QTOFsplash10-0a59-3900000000-1a2c09a8608919297c952017-10-06Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 10V, Negative-QTOFsplash10-014i-0013900000-068f16684f585dfd96972017-10-06Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 20V, Negative-QTOFsplash10-0v4r-1596500000-be5facd30077395423f92017-10-06Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 40V, Negative-QTOFsplash10-0006-9630000000-1cd5ccbd2cba4f49ade32017-10-06Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 10V, Positive-QTOFsplash10-00e9-1923500000-e919968ded3360a090ee2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 20V, Positive-QTOFsplash10-0ac9-3911000000-48034f87f5795f4f0ec02021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 40V, Positive-QTOFsplash10-0a4l-7900000000-b9a061dd4495561c76d62021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 10V, Negative-QTOFsplash10-014i-0500900000-800664271d4ac4e35e3b2021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 20V, Negative-QTOFsplash10-014i-2930200000-4a42dde7c466900d19a92021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Palmitoyl tyrosine 40V, Negative-QTOFsplash10-00l6-7940000000-aae56dae48fba83f802e2021-09-23Wishart LabView Spectrum
Biological Properties
Cellular LocationsNot Available
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound6710112
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Bradshaw HB, Walker JM: The expanding field of cannabimimetic and related lipid mediators. Br J Pharmacol. 2005 Feb;144(4):459-65. doi: 10.1038/sj.bjp.0706093. [PubMed:15655504 ]
  2. Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW: Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One. 2012;7(11):e48852. doi: 10.1371/journal.pone.0048852. Epub 2012 Nov 8. [PubMed:23144998 ]
  3. Raboune S, Stuart JM, Leishman E, Takacs SM, Rhodes B, Basnet A, Jameyfield E, McHugh D, Widlanski T, Bradshaw HB: Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front Cell Neurosci. 2014 Aug 1;8:195. doi: 10.3389/fncel.2014.00195. eCollection 2014. [PubMed:25136293 ]
  4. Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross JR, Emiliano AB, Han SM, Chu J, Vila-Farres X, Kaplitt J, Rogoz A, Calle PY, Hunter C, Bitok JK, Brady SF: Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature. 2017 Sep 7;549(7670):48-53. doi: 10.1038/nature23874. Epub 2017 Aug 30. [PubMed:28854168 ]
  5. Bradshaw HB, Raboune S, Hollis JL: Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication. Life Sci. 2013 Mar 19;92(8-9):404-9. doi: 10.1016/j.lfs.2012.11.008. Epub 2012 Nov 20. [PubMed:23178153 ]
  6. Long JZ, Roche AM, Berdan CA, Louie SM, Roberts AJ, Svensson KJ, Dou FY, Bateman LA, Mina AI, Deng Z, Jedrychowski MP, Lin H, Kamenecka TM, Asara JM, Griffin PR, Banks AS, Nomura DK, Spiegelman BM: Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6937-E6945. doi: 10.1073/pnas.1803389115. Epub 2018 Jul 2. [PubMed:29967167 ]