Record Information |
---|
Version | 5.0 |
---|
Status | Detected but not Quantified |
---|
Creation Date | 2008-10-29 14:26:36 UTC |
---|
Update Date | 2022-11-30 19:03:55 UTC |
---|
HMDB ID | HMDB0011149 |
---|
Secondary Accession Numbers | - HMDB0062689
- HMDB11149
- HMDB62689
|
---|
Metabolite Identification |
---|
Common Name | LysoPC(O-18:0/0:0) |
---|
Description | 1-Octadecyl-sn-glycero-3-phosphocholine is an intermediate in the ether lipid metabolism pathway. 1-Octadecyl-sn-glycero-3-phosphocholine is irreversibly produced from 2-acetyl-1-(9Z-octadecenyl)-sn-glycero-3-phosphocholine via the enzyme 1-alkyl-2-acetylglycerophosphocholine esterase (EC 3.1.1.47). 1-Octadecyl-sn-glycero-3-phosphocholine is an ether phospho-ether lipid. Ether lipids are lipids in which one or more of the carbon atoms on glycerol are bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids. LPL-R's are members of the G protein-coupled receptor (GPR) family of integral membrane proteins. Lysophosphatidylcholines (LPCs) specifically bind to GPR119, GPR40, GPR55 and GPR4. binding of LPCs to GPR119, GPR40 and GPR55 induces intracellular calcium mobilization and leads to increased glucose-stimulated insulin secretion in different cell systems. In blood or plasma LPCs are bound mainly to albumin and to a lesser extent to lipoproteins. Inflammation, cell damage and other pathophysiological conditions can profoundly alter the ratio of free to albumin bound LPC through increased production of LPC or decreased plasma levels of albumin (PMID: 32599910 ). In particular, lower levels of albumin (hypoalbuminemia) lead to lower levels of LPC in the blood. Hypoalbuminemia with albumin concentrations of <20 g/L are typical of patients with sepsis, burns or serious trauma (PMID: 26557421 ). Such low levels of albumin often lead to LPC levels that are 50-80 % lower than that seen in healthy individuals (PMID: 27501420 ). Decreased levels of LPC have been observed in a number of other inflammatory conditions beyond sepsis, including rheumatoid arthritis, diabetes, schizophrenia, polycystic ovary syndrome, Alzheimer’s disease, pulmonary arterial hypertension, aging, asthma and liver cirrhosis, where they were associated with increased mortality risk (PMID: 32599910 ). LPCs have a number of protective or anti-inflammatory effects. Higher levels of LPC induce cyclooxygenase-2 and endothelial nitric oxide synthase (eNOS) expression in endothelial cells, both of which can have vasoprotective effects either via production of prostacyclin or nitric oxide (PMID: 32599910 ). LPCs have been shown to elicit a number of effects on the innate immune system and effectively serve as dual-activity ligand molecules. In particular, LPCs directly activate toll-like receptor (TLR) 4 and TLR-2-1 receptors in the absence of classical TLR ligands. However, LPCs can also inhibit TLR-mediated signaling in the presence of classical TLR ligands, thereby acting as anti-inflammatory molecules (PMID: 32599910 ). Low levels of LPC during a bacterial or viral infection with TLR-mediated signalling can lead to opposing (inflammatory vs. anti-inflammatory) effects and immune dysregulation. |
---|
Structure | CCCCCCCCCCCCCCCCCCOC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C InChI=1S/C26H56NO6P/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-22-31-24-26(28)25-33-34(29,30)32-23-21-27(2,3)4/h26,28H,5-25H2,1-4H3/t26-/m1/s1 |
---|
Synonyms | Value | Source |
---|
1-O-Octadecylglycerol-3-phosphatidylcholine | HMDB | 1-Octadecyl-sn-glycero-3-phosphocholine | HMDB | 1-Stearyl-GPC | HMDB | 1-Stearyl-GPC (O-18:0) | HMDB | GPC(O-18:0) | HMDB | GPC(O-18:0/0:0) | HMDB | LPC (O-18:0) | HMDB | LysoPC(18:0E/0:0) | HMDB | LysoPC(O-18:0) | HMDB | PC(O-18:0/0:0) | HMDB | LysoPC(DM18:0) | HMDB | 1-O-Octadecyl-sn-glycero-3-phosphocholine | HMDB | 1-O-Octadecyl-sn-glyceryl-3-phosphorylcholine | HMDB | 1-Octadecyl-GPC | HMDB | 1-Octadecyl-lysophosphatidylcholine | HMDB | 1-Octadecylglycero-3-phosphocholine | HMDB | GPC(18:0) | HMDB | GPC(18:0/0:0) | HMDB | LPC(18:0) | HMDB | LPC(18:0/0:0) | HMDB | LPC(O-18:0) | HMDB | LPC(O-18:0/0:0) | HMDB | Lyso-platelet-activating factor | HMDB | LysoPC(18:0) | HMDB | LysoPC(18:0/0:0) | HMDB | Lysophosphatidylcholine(18:0) | HMDB | Lysophosphatidylcholine(18:0/0:0) | HMDB | Lysophosphatidylcholine(O-18:0) | HMDB | Lysophosphatidylcholine(O-18:0/0:0) | HMDB | LysoPC(O-18:0/0:0) | HMDB |
|
---|
Chemical Formula | C26H56NO6P |
---|
Average Molecular Weight | 509.6997 |
---|
Monoisotopic Molecular Weight | 509.384525041 |
---|
IUPAC Name | (2-{[(2R)-2-hydroxy-3-(octadecyloxy)propyl phosphono]oxy}ethyl)trimethylazanium |
---|
Traditional Name | (2-{[(2R)-2-hydroxy-3-(octadecyloxy)propyl phosphono]oxy}ethyl)trimethylazanium |
---|
CAS Registry Number | 74430-89-0 |
---|
SMILES | CCCCCCCCCCCCCCCCCCOC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C |
---|
InChI Identifier | InChI=1S/C26H56NO6P/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-22-31-24-26(28)25-33-34(29,30)32-23-21-27(2,3)4/h26,28H,5-25H2,1-4H3/t26-/m1/s1 |
---|
InChI Key | XKBJVQHMEXMFDZ-AREMUKBSSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as monoalkylglycerophosphocholines. Monoalkylglycerophosphocholines are compounds containing glycerophosphocholine moiety attached to an fatty acyl chain through an ether bond. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Glycerophospholipids |
---|
Sub Class | Glycerophosphocholines |
---|
Direct Parent | Monoalkylglycerophosphocholines |
---|
Alternative Parents | |
---|
Substituents | - Monoalkylglycerophosphocholine
- Phosphocholine
- Glycerol ether
- Dialkyl phosphate
- Organic phosphoric acid derivative
- Phosphoric acid ester
- Alkyl phosphate
- Quaternary ammonium salt
- Tetraalkylammonium salt
- Secondary alcohol
- Ether
- Dialkyl ether
- Hydrocarbon derivative
- Alcohol
- Organic oxide
- Organopnictogen compound
- Organic oxygen compound
- Organooxygen compound
- Organonitrogen compound
- Organic nitrogen compound
- Amine
- Organic salt
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatized |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted GC-MS | Predicted GC-MS Spectrum - LysoPC(O-18:0/0:0) GC-MS (Non-derivatized) - 70eV, Positive | splash10-000t-5930000000-c002f9346ff27ec388a3 | 2017-09-01 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - LysoPC(O-18:0/0:0) GC-MS (1 TMS) - 70eV, Positive | splash10-0002-9460000000-f8bf856a15fd2cd2fa22 | 2017-10-06 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 10V, Positive-QTOF | splash10-01p9-9123230000-9e5018d60ea3b2b28b32 | 2017-09-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 20V, Positive-QTOF | splash10-0ugr-9455200000-0c72dc03f55ca1a4599e | 2017-09-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 40V, Positive-QTOF | splash10-0f79-9231000000-adbce76401a5b20f74d5 | 2017-09-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 10V, Negative-QTOF | splash10-0a4i-0010490000-78228db3f0e06f9d298c | 2017-09-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 20V, Negative-QTOF | splash10-0ar0-2160920000-56a3704799b8868294e2 | 2017-09-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 40V, Negative-QTOF | splash10-00or-9280000000-a127711d12f38e903413 | 2017-09-01 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 10V, Positive-QTOF | splash10-001i-0000090000-92389686f000bb55e113 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 20V, Positive-QTOF | splash10-001i-0000090000-92389686f000bb55e113 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 40V, Positive-QTOF | splash10-00di-0000930000-3fa7cb0f3d40c52c6b6a | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 10V, Negative-QTOF | splash10-0a4i-0000090000-0092c5cfc59f1e835b62 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 20V, Negative-QTOF | splash10-0a4i-0020290000-1cacf188cd006762529a | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 40V, Negative-QTOF | splash10-004i-9210100000-3e2f6987fc891e79e2c0 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 10V, Negative-QTOF | splash10-0006-0000090000-ac3949a1bc7527be80e6 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 20V, Negative-QTOF | splash10-0006-0110690000-b1a4faf5ff77d30fbafc | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 40V, Negative-QTOF | splash10-0006-0110910000-2f268286db3bc04e9cec | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 10V, Positive-QTOF | splash10-0il0-1900160000-4dc04f9d727b989bed34 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 20V, Positive-QTOF | splash10-0ik9-1710190000-87893f3898856e238ceb | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - LysoPC(O-18:0/0:0) 40V, Positive-QTOF | splash10-0ik9-0710190000-487f87885e45a61ac64d | 2021-09-22 | Wishart Lab | View Spectrum |
|
---|
General References | - Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
- Wernly B, Lichtenauer M, Hoppe UC, Jung C: Hyperglycemia in septic patients: an essential stress survival response in all, a robust marker for risk stratification in some, to be messed with in none. J Thorac Dis. 2016 Jul;8(7):E621-4. doi: 10.21037/jtd.2016.05.24. [PubMed:27501420 ]
- Knuplez E, Marsche G: An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci. 2020 Jun 24;21(12). pii: ijms21124501. doi: 10.3390/ijms21124501. [PubMed:32599910 ]
- Sun JK, Sun F, Wang X, Yuan ST, Zheng SY, Mu XW: Risk factors and prognosis of hypoalbuminemia in surgical septic patients. PeerJ. 2015 Oct 1;3:e1267. doi: 10.7717/peerj.1267. eCollection 2015. [PubMed:26557421 ]
- Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
---|