Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2005-11-16 15:48:42 UTC |
---|
Update Date | 2023-07-07 20:53:58 UTC |
---|
HMDB ID | HMDB0000696 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | Methionine |
---|
Description | Methionine (Met), also known as L-methionine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (-NH2) and carboxyl (-COOH) functional groups, along with a side chain (R group) specific to each amino acid. Methionine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Methionine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Methionine is an essential amino acid (there are 9 essential amino acids), meaning the body cannot synthesize it, and it must be obtained from the diet. It is required for normal growth and development of humans, other mammals, and avian species. In addition to being a substrate for protein synthesis, methionine is an intermediate in transmethylation reactions, serving as the major methyl group donor in vivo, including the methyl groups for DNA and RNA intermediates. Methionine is a methyl acceptor for 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthase), the only reaction that allows for the recycling of this form of folate, and is also a methyl acceptor for the catabolism of betaine. Methionine is the metabolic precursor for cysteine. Only the sulfur atom from methionine is transferred to cysteine; the carbon skeleton of cysteine is donated by serine (PMID: 16702340 ). There is a general consensus concerning normal sulfur amino acid (SAA) requirements. WHO recommendations amount to 13 mg/kg per 24 h in healthy adults. This amount is roughly doubled in artificial nutrition regimens. In disease or after trauma, requirements may be altered for methionine, cysteine, and taurine. Although in specific cases of congenital enzyme deficiency, prematurity, or diminished liver function, hypermethioninemia or hyperhomocysteinemia may occur, SAA supplementation can be considered safe in amounts exceeding 2-3 times the minimum recommended daily intake. Apart from some very specific indications (e.g. acetaminophen poisoning) the usefulness of SAA supplementation is not yet established (PMID: 16702341 ). Methionine is known to exacerbate psychopathological symptoms in schizophrenic patients, but there is no evidence of similar effects in healthy subjects. The role of methionine as a precursor of homocysteine is the most notable cause for concern. Acute doses of methionine can lead to acute increases in plasma homocysteine, which can be used as an index of the susceptibility to cardiovascular disease. Sufficiently high doses of methionine can actually result in death. Longer-term studies in adults have indicated no adverse consequences of moderate fluctuations in dietary methionine intake, but intakes higher than 5 times the normal amount resulted in elevated homocysteine levels. These effects of methionine on homocysteine and vascular function are moderated by supplements of vitamins B-6, B-12, C, and folic acid (PMID: 16702346 ). When present in sufficiently high levels, methionine can act as an atherogen and a metabotoxin. An atherogen is a compound that when present at chronically high levels causes atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methionine are associated with at least ten inborn errors of metabolism, including cystathionine beta-synthase deficiency, glycine N-methyltransferase deficiency, homocystinuria, tyrosinemia, galactosemia, homocystinuria-megaloblastic anemia due to defects in cobalamin metabolism, methionine adenosyltransferase deficiency, methylenetetrahydrofolate reductase deficiency, and S-adenosylhomocysteine (SAH) hydrolase deficiency. Chronically elevated levels of methionine in infants can lead to intellectual disability and other neurological problems, delays in motor skills, sluggishness, muscle weakness, and liver problems. Many individuals with these metabolic disorders tend to develop cardiovascular disease later in life. Studies on feeding rodents high levels of methionine have shown that methionine promotes atherosclerotic plaques independently of homocysteine levels (PMID: 26647293 ). A similar study in Finnish men showed the same effect (PMID: 16487911 ). |
---|
Structure | InChI=1S/C5H11NO2S/c1-9-3-2-4(6)5(7)8/h4H,2-3,6H2,1H3,(H,7,8)/t4-/m0/s1 |
---|
Synonyms | Value | Source |
---|
(2S)-2-Amino-4-(methylsulfanyl)butanoic acid | ChEBI | (S)-2-Amino-4-(methylthio)butanoic acid | ChEBI | (S)-2-Amino-4-(methylthio)butyric acid | ChEBI | (S)-Methionine | ChEBI | L-(-)-Methionine | ChEBI | L-alpha-Amino-gamma-methylmercaptobutyric acid | ChEBI | L-Methionin | ChEBI | M | ChEBI | Met | ChEBI | METHIONINE | ChEBI | L-2-Amino-4methylthiobutyric acid | Kegg | L-Methionine Z | Kegg | (2S)-2-Amino-4-(methylsulfanyl)butanoate | Generator | (2S)-2-Amino-4-(methylsulphanyl)butanoate | Generator | (2S)-2-Amino-4-(methylsulphanyl)butanoic acid | Generator | (S)-2-Amino-4-(methylthio)butanoate | Generator | (S)-2-Amino-4-(methylthio)butyrate | Generator | L-a-Amino-g-methylmercaptobutyrate | Generator | L-a-Amino-g-methylmercaptobutyric acid | Generator | L-alpha-Amino-gamma-methylmercaptobutyrate | Generator | L-Α-amino-γ-methylmercaptobutyrate | Generator | L-Α-amino-γ-methylmercaptobutyric acid | Generator | L-2-Amino-4methylthiobutyrate | Generator | (L)-Methionine | HMDB | (S)-(+)-Methionine | HMDB | (S)-2-Amino-4-(methylthio)-butanoate | HMDB | (S)-2-Amino-4-(methylthio)-butanoic acid | HMDB | 2-Amino-4-(methylthio)butyrate | HMDB | 2-Amino-4-(methylthio)butyric acid | HMDB | 2-Amino-4-methylthiobutanoate | HMDB | 2-Amino-4-methylthiobutanoic acid | HMDB | a-Amino-g-methylmercaptobutyrate | HMDB | a-Amino-g-methylmercaptobutyric acid | HMDB | Acimethin | HMDB | alpha-Amino-alpha-aminobutyric acid | HMDB | alpha-Amino-gamma-methylmercaptobutyrate | HMDB | alpha-Amino-gamma-methylmercaptobutyric acid | HMDB | Cymethion | HMDB | g-Methylthio-a-aminobutyrate | HMDB | g-Methylthio-a-aminobutyric acid | HMDB | gamma-Methylthio-alpha-aminobutyrate | HMDB | gamma-Methylthio-alpha-aminobutyric acid | HMDB | H-Met-H | HMDB | H-Met-OH | HMDB | L(-)-Amino-alpha-amino-alpha-aminobutyric acid | HMDB | L(-)-Amino-gamma-methylthiobutyric acid | HMDB | L-2-Amino-4-(methylthio)butyric acid | HMDB | L-2-Amino-4-methylthiobutyric acid | HMDB | L-a-Amino-g-methylthiobutyrate | HMDB | L-a-Amino-g-methylthiobutyric acid | HMDB | L-alpha-Amino-gamma-methylthiobutyrate | HMDB | L-alpha-Amino-gamma-methylthiobutyric acid | HMDB | L-gamma-Methylthio-alpha-aminobutyric acid | HMDB | L-Methioninum | HMDB | Liquimeth | HMDB | Mepron | HMDB | Methilanin | HMDB | Methioninum | HMDB | Metionina | HMDB | Neo-methidin | HMDB | Poly-L-methionine | HMDB | Polymethionine | HMDB | S-Methionine | HMDB | S-Methyl-L-homocysteine | HMDB | Toxin war | HMDB | L-Isomer methionine | HMDB | Methionine, L-isomer | HMDB | Pedameth | HMDB | Methionine, L isomer | HMDB | (3R,3'r,6S)-4,5-DIDEHYDRO-5,6-dihydro-BETA,BETA-carotene-3,3'-diol | ChEBI | Bo-xan | ChEBI | e 161b | ChEBI | Xanthophyll | ChEBI | (3R,3'r,6S)-4,5-DIDEHYDRO-5,6-dihydro-b,b-carotene-3,3'-diol | Generator | (3R,3'r,6S)-4,5-DIDEHYDRO-5,6-dihydro-β,β-carotene-3,3'-diol | Generator |
|
---|
Chemical Formula | C5H11NO2S |
---|
Average Molecular Weight | 149.211 |
---|
Monoisotopic Molecular Weight | 149.051049291 |
---|
IUPAC Name | (2S)-2-amino-4-(methylsulfanyl)butanoic acid |
---|
Traditional Name | L-methionine |
---|
CAS Registry Number | 63-68-3 |
---|
SMILES | CSCC[C@H](N)C(O)=O |
---|
InChI Identifier | InChI=1S/C5H11NO2S/c1-9-3-2-4(6)5(7)8/h4H,2-3,6H2,1H3,(H,7,8)/t4-/m0/s1 |
---|
InChI Key | FFEARJCKVFRZRR-BYPYZUCNSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as methionine and derivatives. Methionine and derivatives are compounds containing methionine or a derivative thereof resulting from reaction of methionine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Methionine and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Methionine or derivatives
- Alpha-amino acid
- L-alpha-amino acid
- Thia fatty acid
- Fatty acid
- Fatty acyl
- Amino acid
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Thioether
- Sulfenyl compound
- Dialkylthioether
- Amine
- Organic oxygen compound
- Primary amine
- Organosulfur compound
- Organooxygen compound
- Organonitrogen compound
- Organic nitrogen compound
- Primary aliphatic amine
- Carbonyl group
- Organopnictogen compound
- Organic oxide
- Hydrocarbon derivative
- Aliphatic acyclic compound
|
---|
Molecular Framework | Aliphatic acyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | Biological locationRoute of exposureSourceEndogenousExogenousFood- Food (HMDB: HMDB0000696)
Animal originHerb and spiceVegetableFruitNutCereal and cereal productPulseGourdCoffee and coffee productSoyTeaBaking goodDishBeverageAquatic originEggConfectioneryMilk and milk productOther milk productFermented milkFermented milk productUnfermented milk- Milk (Other mammals) (FooDB: FOOD00690)
- Milk (Human) (FooDB: FOOD00666)
- Milk (Cow) (FooDB: FOOD00618)
- Cow milk, pasteurized, vitamin A + D added, 0% fat (FooDB: FOOD00889)
- Cow milk, pasteurized, vitamin A + D added, 1% fat (FooDB: FOOD00890)
- Cow milk, pasteurized, vitamin A + D added, 2% fat (FooDB: FOOD00891)
- Cow milk, pasteurized, vitamin D added, 3.25% fat (FooDB: FOOD00892)
Fat and oilCocoa and cocoa productBaby foodUnclassified food or beverageSnack
|
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | 284 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 56.6 mg/mL | YALKOWSKY,SH & DANNENFELSER,RM (1992) | LogP | -1.87 | HANSCH,C ET AL. (1995) |
|
---|
Experimental Chromatographic Properties | Experimental Collision Cross Sections |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatizedDerivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
---|
L-Methionine,1TMS,isomer #1 | CSCC[C@H](N)C(=O)O[Si](C)(C)C | 1408.1 | Semi standard non polar | 33892256 | L-Methionine,1TMS,isomer #2 | CSCC[C@H](N[Si](C)(C)C)C(=O)O | 1491.7 | Semi standard non polar | 33892256 | L-Methionine,2TMS,isomer #1 | CSCC[C@H](N[Si](C)(C)C)C(=O)O[Si](C)(C)C | 1520.3 | Semi standard non polar | 33892256 | L-Methionine,2TMS,isomer #1 | CSCC[C@H](N[Si](C)(C)C)C(=O)O[Si](C)(C)C | 1521.1 | Standard non polar | 33892256 | L-Methionine,2TMS,isomer #1 | CSCC[C@H](N[Si](C)(C)C)C(=O)O[Si](C)(C)C | 1806.1 | Standard polar | 33892256 | L-Methionine,2TMS,isomer #2 | CSCC[C@@H](C(=O)O)N([Si](C)(C)C)[Si](C)(C)C | 1646.2 | Semi standard non polar | 33892256 | L-Methionine,2TMS,isomer #2 | CSCC[C@@H](C(=O)O)N([Si](C)(C)C)[Si](C)(C)C | 1582.3 | Standard non polar | 33892256 | L-Methionine,2TMS,isomer #2 | CSCC[C@@H](C(=O)O)N([Si](C)(C)C)[Si](C)(C)C | 1991.4 | Standard polar | 33892256 | L-Methionine,3TMS,isomer #1 | CSCC[C@@H](C(=O)O[Si](C)(C)C)N([Si](C)(C)C)[Si](C)(C)C | 1679.1 | Semi standard non polar | 33892256 | L-Methionine,3TMS,isomer #1 | CSCC[C@@H](C(=O)O[Si](C)(C)C)N([Si](C)(C)C)[Si](C)(C)C | 1650.9 | Standard non polar | 33892256 | L-Methionine,3TMS,isomer #1 | CSCC[C@@H](C(=O)O[Si](C)(C)C)N([Si](C)(C)C)[Si](C)(C)C | 1715.4 | Standard polar | 33892256 | L-Methionine,1TBDMS,isomer #1 | CSCC[C@H](N)C(=O)O[Si](C)(C)C(C)(C)C | 1632.2 | Semi standard non polar | 33892256 | L-Methionine,1TBDMS,isomer #2 | CSCC[C@H](N[Si](C)(C)C(C)(C)C)C(=O)O | 1733.0 | Semi standard non polar | 33892256 | L-Methionine,2TBDMS,isomer #1 | CSCC[C@H](N[Si](C)(C)C(C)(C)C)C(=O)O[Si](C)(C)C(C)(C)C | 1979.7 | Semi standard non polar | 33892256 | L-Methionine,2TBDMS,isomer #1 | CSCC[C@H](N[Si](C)(C)C(C)(C)C)C(=O)O[Si](C)(C)C(C)(C)C | 1959.5 | Standard non polar | 33892256 | L-Methionine,2TBDMS,isomer #1 | CSCC[C@H](N[Si](C)(C)C(C)(C)C)C(=O)O[Si](C)(C)C(C)(C)C | 2015.9 | Standard polar | 33892256 | L-Methionine,2TBDMS,isomer #2 | CSCC[C@@H](C(=O)O)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2074.5 | Semi standard non polar | 33892256 | L-Methionine,2TBDMS,isomer #2 | CSCC[C@@H](C(=O)O)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2021.5 | Standard non polar | 33892256 | L-Methionine,2TBDMS,isomer #2 | CSCC[C@@H](C(=O)O)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2115.8 | Standard polar | 33892256 | L-Methionine,3TBDMS,isomer #1 | CSCC[C@@H](C(=O)O[Si](C)(C)C(C)(C)C)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2357.8 | Semi standard non polar | 33892256 | L-Methionine,3TBDMS,isomer #1 | CSCC[C@@H](C(=O)O[Si](C)(C)C(C)(C)C)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2274.4 | Standard non polar | 33892256 | L-Methionine,3TBDMS,isomer #1 | CSCC[C@@H](C(=O)O[Si](C)(C)C(C)(C)C)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2089.2 | Standard polar | 33892256 |
|
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental GC-MS | GC-MS Spectrum - Methionine GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-004i-0920000000-945c85aa7c9f5eb2dfbb | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized) | splash10-004i-0910000000-b837ee0f4413856560f1 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-00b9-7910000000-5a1558fbb2f5e86edc9b | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-MS (1 TMS) | splash10-0udi-1900000000-1a97567ce4f25c4e8263 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-MS (2 TMS) | splash10-004i-0910000000-1b0477118cb20549bf4d | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine EI-B (Non-derivatized) | splash10-004i-0920000000-8ffae5d87508e0704903 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-EI-TOF (Non-derivatized) | splash10-004i-0920000000-945c85aa7c9f5eb2dfbb | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-EI-TOF (Non-derivatized) | splash10-004i-0910000000-b837ee0f4413856560f1 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-EI-QQ (Non-derivatized) | splash10-01bc-2692000000-c6a4af434abaeea2de87 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-EI-TOF (Non-derivatized) | splash10-00b9-7910000000-5a1558fbb2f5e86edc9b | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-MS (Non-derivatized) | splash10-0udi-1900000000-1a97567ce4f25c4e8263 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Methionine GC-MS (Non-derivatized) | splash10-004i-0910000000-1b0477118cb20549bf4d | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Methionine GC-MS (Non-derivatized) - 70eV, Positive | splash10-0mbd-9200000000-77e5cfb78936ad02d71c | 2016-09-22 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Methionine GC-MS (1 TMS) - 70eV, Positive | splash10-00di-9510000000-c03dec8575710eed861e | 2017-10-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Methionine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Methionine GC-MS (TMS_1_2) - 70eV, Positive | Not Available | 2021-11-05 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Methionine GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | 2021-11-05 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Methionine GC-MS (TBDMS_1_2) - 70eV, Positive | Not Available | 2021-11-05 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine Quattro_QQQ 10V, Positive-QTOF (Annotated) | splash10-0uea-1900000000-b991859b2c5bed6592a8 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine Quattro_QQQ 25V, Positive-QTOF (Annotated) | splash10-08fr-9000000000-66855ace60e59837f131 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine Quattro_QQQ 40V, Positive-QTOF (Annotated) | splash10-08fr-9000000000-56a567791c824c6a9da6 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-0fe0-0900000000-d680295f21b2e2b40366 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-0006-9000000000-062d3540db4db22da836 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-00di-0900000000-84467513e2c9ec1a6851 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-001i-0900000000-88dc2bebb198eea550ef | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-0udi-0920000000-b444ad79abeb16acde43 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-001i-0900000000-6e24a8df417e5f3db58c | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-00di-0900000000-c60ef880eb9a816a274b | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-000i-0900000000-a7b7d1a3481c0c691a5b | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negative-QTOF | splash10-0002-0900000000-9156f088f4cc9eafa892 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negative-QTOF | splash10-0002-9200000000-f78ba2aab8d5a0e0b135 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negative-QTOF | splash10-0002-9000000000-e7b819fd2d0ac3862860 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negative-QTOF | splash10-0002-9000000000-b61396e720381bd5ff85 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negative-QTOF | splash10-0002-9000000000-b61396e720381bd5ff85 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positive-QTOF | splash10-0udi-0900000000-c3557cb41fd6fe268819 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positive-QTOF | splash10-0udi-6900000000-6bf5af2d1c561013948a | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positive-QTOF | splash10-08fr-9000000000-63c9b1c138f9a27490e5 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positive-QTOF | splash10-03di-9000000000-e133c47b0efe4992589f | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positive-QTOF | splash10-03di-9000000000-dee78b4f34f8732fedb0 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine CE-ESI-TOF (CE-system connected to 6210 Time-of-Flight MS, Agilent) , Positive-QTOF | splash10-0udi-0900000000-d3f03ff5e8eacc8b6c8e | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Methionine LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positive-QTOF | splash10-0udi-0900000000-e0dd5ff44b7962f6a2d2 | 2012-08-31 | HMDB team, MONA | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Methionine 10V, Positive-QTOF | splash10-0udi-2900000000-305916dde72c899993b6 | 2016-09-12 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Methionine 20V, Positive-QTOF | splash10-0udi-9800000000-47e0a34a2ec02bd762bf | 2016-09-12 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Experimental 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | 2012-12-04 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Experimental 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, experimental) | 2021-10-10 | Wishart Lab | View Spectrum | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | 2012-12-05 | Wishart Lab | View Spectrum |
IR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M-H]-) | 2023-02-03 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+) | 2023-02-03 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+) | 2023-02-03 | FELIX lab | View Spectrum |
|
---|
Disease References | Epilepsy |
---|
- Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
| Heart failure |
---|
- Norrelund H, Wiggers H, Halbirk M, Frystyk J, Flyvbjerg A, Botker HE, Schmitz O, Jorgensen JO, Christiansen JS, Moller N: Abnormalities of whole body protein turnover, muscle metabolism and levels of metabolic hormones in patients with chronic heart failure. J Intern Med. 2006 Jul;260(1):11-21. [PubMed:16789974 ]
| Homocystinuria |
---|
- Kerrin D, Murdoch Eaton D, Livingston J, Henderson M, Smith M: Homocystinuria presenting with sagittal sinus thrombosis in infancy. J Child Neurol. 1996 Jan;11(1):70-1. [PubMed:8745393 ]
- G.Frauendienst-Egger, Friedrich K. Trefz (2017). MetaGene: Metabolic & Genetic Information Center (MIC: http://www.metagene.de). METAGENE consortium.
| Colorectal cancer |
---|
- Ritchie SA, Ahiahonu PW, Jayasinghe D, Heath D, Liu J, Lu Y, Jin W, Kavianpour A, Yamazaki Y, Khan AM, Hossain M, Su-Myat KK, Wood PL, Krenitsky K, Takemasa I, Miyake M, Sekimoto M, Monden M, Matsubara H, Nomura F, Goodenowe DB: Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Med. 2010 Feb 15;8:13. doi: 10.1186/1741-7015-8-13. [PubMed:20156336 ]
- Ni Y, Xie G, Jia W: Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014 Sep 5;13(9):3857-70. doi: 10.1021/pr500443c. Epub 2014 Aug 14. [PubMed:25105552 ]
- Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
- Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
- Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
| Early preeclampsia |
---|
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomics and first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1840-7. doi: 10.3109/14767058.2012.680254. Epub 2012 Apr 28. [PubMed:22494326 ]
| Pregnancy |
---|
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomics and first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1840-7. doi: 10.3109/14767058.2012.680254. Epub 2012 Apr 28. [PubMed:22494326 ]
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013 Jan;208(1):58.e1-7. doi: 10.1016/j.ajog.2012.11.003. Epub 2012 Nov 13. [PubMed:23159745 ]
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester Down syndrome prediction. Am J Obstet Gynecol. 2013 May;208(5):371.e1-8. doi: 10.1016/j.ajog.2012.12.035. Epub 2013 Jan 8. [PubMed:23313728 ]
- Bahado-Singh RO, Akolekar R, Chelliah A, Mandal R, Dong E, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester trisomy 18 detection. Am J Obstet Gynecol. 2013 Jul;209(1):65.e1-9. doi: 10.1016/j.ajog.2013.03.028. Epub 2013 Mar 25. [PubMed:23535240 ]
- Bahado-Singh RO, Ertl R, Mandal R, Bjorndahl TC, Syngelaki A, Han B, Dong E, Liu PB, Alpay-Savasan Z, Wishart DS, Nicolaides KH: Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol. 2014 Sep;211(3):240.e1-240.e14. doi: 10.1016/j.ajog.2014.03.056. Epub 2014 Apr 1. [PubMed:24704061 ]
| Late-onset preeclampsia |
---|
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013 Jan;208(1):58.e1-7. doi: 10.1016/j.ajog.2012.11.003. Epub 2012 Nov 13. [PubMed:23159745 ]
| Fumarase deficiency |
---|
- Allegri G, Fernandes MJ, Scalco FB, Correia P, Simoni RE, Llerena JC Jr, de Oliveira ML: Fumaric aciduria: an overview and the first Brazilian case report. J Inherit Metab Dis. 2010 Aug;33(4):411-9. doi: 10.1007/s10545-010-9134-2. Epub 2010 Jun 15. [PubMed:20549362 ]
| Tyrosinemia |
---|
- Swarna M, Jyothy A, Usha Rani P, Reddy PP: Amino acid disorders in mental retardation: a two-decade study from Andhra Pradesh. Biochem Genet. 2004 Apr;42(3-4):85-98. [PubMed:15168722 ]
| Methylenetetrahydrofolate reductase deficiency |
---|
- Haworth JC, Dilling LA, Surtees RA, Seargeant LE, Lue-Shing H, Cooper BA, Rosenblatt DS: Symptomatic and asymptomatic methylenetetrahydrofolate reductase deficiency in two adult brothers. Am J Med Genet. 1993 Mar 1;45(5):572-6. [PubMed:8456826 ]
| Hypermethioninemia |
---|
- Baric I, Staufner C, Augoustides-Savvopoulou P, Chien YH, Dobbelaere D, Grunert SC, Opladen T, Petkovic Ramadza D, Rakic B, Wedell A, Blom HJ: Consensus recommendations for the diagnosis, treatment and follow-up of inherited methylation disorders. J Inherit Metab Dis. 2017 Jan;40(1):5-20. doi: 10.1007/s10545-016-9972-7. Epub 2016 Sep 26. [PubMed:27671891 ]
- Labrune P, Perignon JL, Rault M, Brunet C, Lutun H, Charpentier C, Saudubray JM, Odievre M: Familial hypermethioninemia partially responsive to dietary restriction. J Pediatr. 1990 Aug;117(2 Pt 1):220-6. [PubMed:2380820 ]
- Baric I, Fumic K, Glenn B, Cuk M, Schulze A, Finkelstein JD, James SJ, Mejaski-Bosnjak V, Pazanin L, Pogribny IP, Rados M, Sarnavka V, Scukanec-Spoljar M, Allen RH, Stabler S, Uzelac L, Vugrek O, Wagner C, Zeisel S, Mudd SH: S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4234-9. Epub 2004 Mar 15. [PubMed:15024124 ]
| Glycine N-methyltransferase deficiency |
---|
- Baric I, Erdol S, Saglam H, Lovric M, Beluzic R, Vugrek O, Blom HJ, Fumic K: Glycine N-Methyltransferase Deficiency: A Member of Dysmethylating Liver Disorders? JIMD Rep. 2017;31:101-106. doi: 10.1007/8904_2016_543. Epub 2016 May 21. [PubMed:27207470 ]
| Methionine adenosyltransferase deficiency |
---|
- Gaull GE, Tallan HH, Lonsdale D, Przyrembel H, Schaffner F, von Bassewitz DB: Hypermethioninemia associated with methionine adenosyltransferase deficiency: clinical, morphologic, and biochemical observations on four patients. J Pediatr. 1981 May;98(5):734-41. [PubMed:7229751 ]
| Obesity |
---|
- Reinehr T, Wolters B, Knop C, Lass N, Hellmuth C, Harder U, Peissner W, Wahl S, Grallert H, Adamski J, Illig T, Prehn C, Yu Z, Wang-Sattler R, Koletzko B: Changes in the serum metabolite profile in obese children with weight loss. Eur J Nutr. 2015 Mar;54(2):173-81. doi: 10.1007/s00394-014-0698-8. Epub 2014 Apr 17. [PubMed:24740590 ]
- Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Mittelstrass K, Polonikov A, Prehn C, Romisch-Margl W, Adamski J, Suhre K, Grallert H, Illig T, Wang-Sattler R, Reinehr T: Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts. 2012;5(5):660-70. doi: 10.1159/000343204. Epub 2012 Oct 4. [PubMed:23108202 ]
- Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
| Homocystinuria-megaloblastic anemia due to defect in cobalamin metabolism, cblG complementation type |
---|
- Bhardwaj P, Sharma R, Sharma M: Homocystinuria: A rare condition presenting as stroke and megaloblastic anemia. J Pediatr Neurosci. 2010 Jul;5(2):129-31. doi: 10.4103/1817-1745.76110. [PubMed:21559159 ]
| Citrullinemia type II, neonatal-onset |
---|
- Ohura T, Kobayashi K, Tazawa Y, Nishi I, Abukawa D, Sakamoto O, Iinuma K, Saheki T: Neonatal presentation of adult-onset type II citrullinemia. Hum Genet. 2001 Feb;108(2):87-90. [PubMed:11281457 ]
| Cobalamin F disease (cblF) |
---|
- Alfadhel M, Lillquist YP, Davis C, Junker AK, Stockler-Ipsiroglu S: Eighteen-year follow-up of a patient with cobalamin F disease (cblF): report and review. Am J Med Genet A. 2011 Oct;155A(10):2571-7. doi: 10.1002/ajmg.a.34220. Epub 2011 Sep 9. [PubMed:21910240 ]
| Leukemia |
---|
- Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
| Schizophrenia |
---|
- Do KQ, Lauer CJ, Schreiber W, Zollinger M, Gutteck-Amsler U, Cuenod M, Holsboer F: gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem. 1995 Dec;65(6):2652-62. [PubMed:7595563 ]
- Bjerkenstedt L, Edman G, Hagenfeldt L, Sedvall G, Wiesel FA: Plasma amino acids in relation to cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy controls. Br J Psychiatry. 1985 Sep;147:276-82. [PubMed:2415198 ]
| Adenosine kinase deficiency |
---|
- Bjursell MK, Blom HJ, Cayuela JA, Engvall ML, Lesko N, Balasubramaniam S, Brandberg G, Halldin M, Falkenberg M, Jakobs C, Smith D, Struys E, von Dobeln U, Gustafsson CM, Lundeberg J, Wedell A: Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am J Hum Genet. 2011 Oct 7;89(4):507-15. doi: 10.1016/j.ajhg.2011.09.004. Epub 2011 Sep 28. [PubMed:21963049 ]
| Irritable bowel syndrome |
---|
- Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8. [PubMed:21761941 ]
| Ulcerative colitis |
---|
- Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8. [PubMed:21761941 ]
- Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
| Celiac disease |
---|
- Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, Gagliardi F, Laghi L, Crecchio C, Guerzoni ME, Gobbetti M, Francavilla R: Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011 Oct 4;11:219. doi: 10.1186/1471-2180-11-219. [PubMed:21970810 ]
- De Angelis M, Vannini L, Di Cagno R, Cavallo N, Minervini F, Francavilla R, Ercolini D, Gobbetti M: Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. Int J Food Microbiol. 2016 Dec 19;239:125-132. doi: 10.1016/j.ijfoodmicro.2016.07.025. Epub 2016 Jul 19. [PubMed:27452636 ]
| Autism |
---|
- De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R: Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013 Oct 9;8(10):e76993. doi: 10.1371/journal.pone.0076993. eCollection 2013. [PubMed:24130822 ]
| Crohn's disease |
---|
- Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
| Diverticular disease |
---|
- Tursi A, Mastromarino P, Capobianco D, Elisei W, Miccheli A, Capuani G, Tomassini A, Campagna G, Picchio M, Giorgetti G, Fabiocchi F, Brandimarte G: Assessment of Fecal Microbiota and Fecal Metabolome in Symptomatic Uncomplicated Diverticular Disease of the Colon. J Clin Gastroenterol. 2016 Oct;50 Suppl 1:S9-S12. doi: 10.1097/MCG.0000000000000626. [PubMed:27622378 ]
| Rheumatoid arthritis |
---|
- Tie-juan ShaoZhi-xing HeZhi-jun XieHai-chang LiMei-jiao WangCheng-ping Wen. Characterization of ankylosing spondylitis and rheumatoid arthritis using 1H NMR-based metabolomics of human fecal extracts. Metabolomics. April 2016, 12:70 [Link]
| Eosinophilic esophagitis |
---|
- Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
|
|
---|
General References | - Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
- Shoemaker JD, Elliott WH: Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991 Jan 2;562(1-2):125-38. [PubMed:2026685 ]
- Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50. [PubMed:12834252 ]
- Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [PubMed:6198473 ]
- Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
- Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [PubMed:12297216 ]
- Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
- Kersemans V, Cornelissen B, Kersemans K, Bauwens M, Achten E, Dierckx RA, Mertens J, Slegers G: In vivo characterization of 123/125I-2-iodo-L-phenylalanine in an R1M rhabdomyosarcoma athymic mouse model as a potential tumor tracer for SPECT. J Nucl Med. 2005 Mar;46(3):532-9. [PubMed:15750170 ]
- Alme B, Bremmelgaard A, Sjovall J, Thomassen P: Analysis of metabolic profiles of bile acids in urine using a lipophilic anion exchanger and computerized gas-liquid chromatorgaphy-mass spectrometry. J Lipid Res. 1977 May;18(3):339-62. [PubMed:864325 ]
- Sardharwalla IB, Fowler B, Robins AJ, Komrower GM: Detection of heterozygotes for homocystinuria. Study of sulphur-containing amino acids in plasma and urine after L-methionine loading. Arch Dis Child. 1974 Jul;49(7):553-9. [PubMed:4851308 ]
- Alton KB, Hernandez A, Alvarez N, Patrick JE: High-performance liquid chromatographic determination of N-[2(S)-(mercaptomethyl)-3-(2-methylphenyl)-1-oxopropyl]-L-methionine, the active plasma metabolite of a prodrug atriopeptidase inhibitor (SCH 42495), using a thiol selective (Au/Hg) amperometric detector. J Chromatogr. 1992 Sep 2;579(2):307-17. [PubMed:1429978 ]
- Fischer JL, Lancia JK, Mathur A, Smith ML: Selenium protection from DNA damage involves a Ref1/p53/Brca1 protein complex. Anticancer Res. 2006 Mar-Apr;26(2A):899-904. [PubMed:16619485 ]
- Ditscheid B, Funfstuck R, Busch M, Schubert R, Gerth J, Jahreis G: Effect of L-methionine supplementation on plasma homocysteine and other free amino acids: a placebo-controlled double-blind cross-over study. Eur J Clin Nutr. 2005 Jun;59(6):768-75. [PubMed:15870821 ]
- Hesse A, Heimbach D: Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol. 1999 Oct;17(5):308-15. [PubMed:10552150 ]
- Harth G, Horwitz MA: Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect Immun. 2003 Jan;71(1):456-64. [PubMed:12496196 ]
- Takasu A, Shimosegawa T, Shimosegawa E, Hatazawa J, Kimura K, Fujita M, Koizumi M, Kanno I, Toyota T: 11C-methionine uptake to the pancreas and its secretion: a positron emission tomography study in humans. Pancreas. 1999 May;18(4):392-8. [PubMed:10231845 ]
- Ball RO, Courtney-Martin G, Pencharz PB: The in vivo sparing of methionine by cysteine in sulfur amino acid requirements in animal models and adult humans. J Nutr. 2006 Jun;136(6 Suppl):1682S-1693S. [PubMed:16702340 ]
- van de Poll MC, Dejong CH, Soeters PB: Adequate range for sulfur-containing amino acids and biomarkers for their excess: lessons from enteral and parenteral nutrition. J Nutr. 2006 Jun;136(6 Suppl):1694S-1700S. [PubMed:16702341 ]
- Garlick PJ: Toxicity of methionine in humans. J Nutr. 2006 Jun;136(6 Suppl):1722S-1725S. [PubMed:16702346 ]
- Selhub J, Troen AM: Sulfur amino acids and atherosclerosis: a role for excess dietary methionine. Ann N Y Acad Sci. 2016 Jan;1363:18-25. doi: 10.1111/nyas.12962. Epub 2015 Dec 8. [PubMed:26647293 ]
- Virtanen JK, Voutilainen S, Rissanen TH, Happonen P, Mursu J, Laukkanen JA, Poulsen H, Lakka TA, Salonen JT: High dietary methionine intake increases the risk of acute coronary events in middle-aged men. Nutr Metab Cardiovasc Dis. 2006 Mar;16(2):113-20. doi: 10.1016/j.numecd.2005.05.005. Epub 2005 Nov 2. [PubMed:16487911 ]
- Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
|
---|