Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2005-11-16 15:48:42 UTC |
---|
Update Date | 2023-05-30 20:55:51 UTC |
---|
HMDB ID | HMDB0000866 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | N-Acetyl-L-tyrosine |
---|
Description | N-Acetyl-L-tyrosine or N-Acetyltyrosine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltyrosine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltyrosine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tyrosine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618 ). About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686 ). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468 ). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468 ). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltyrosine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618 ). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tyrosine can also occur. Many N-acetylamino acids, including N-acetyltyrosine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986 ; PMID: 20613759 ). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557 ). N-Acetyl-L-tyrosine, has also been associated with several inborn metabolic disorders including tyrosinemia I and aromatic l-amino acid decarboxylase deficiency. N-acetyltyrosine, is used in place of as a tyrosine precursor and administered as a source of nutritional support where oral nutrition is inadequate or cannot be tolerated (PMID: 14621123 ). N-acetyltyrosine has also been identified as an endogenous stress response factor. Under stress conditions, mitochondria release low levels of reactive oxygen species (ROS), which triggers a cytoprotective response, called "mitohormesis". N-acetyltyrosine has recently been identified as an intrinsic triggering factor of mitohormesis in stressed animals (PMID: 32118349 ). Interventions and small molecules, which promote formation of reactive oxygen species (ROS), have been shown to increase stress resistance and lifespan of different model organisms. These phenotypes occur only in response to low concentrations of ROS, while higher concentrations of ROS exert opposing effects. In this regard, a stress-dependent increase in N-acetyltyrosine was recently found to occur in insect larvae that had endured high temperatures (i.e. thermal stress). N-acetyltyrosine treatment has also been demonstrated to induce thermotolerance in several tested insect species. N-acetyltyrosine has been identified in the serum of humans as well as mice, and its concentration in mice was shown to be increased by heat stress, with N-acetyltyrosine pretreatment lowering the concentrations of corticosterone and peroxidized lipids in heat stressed mice (PMID: 33617888 ). |
---|
Structure | CC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O InChI=1S/C11H13NO4/c1-7(13)12-10(11(15)16)6-8-2-4-9(14)5-3-8/h2-5,10,14H,6H2,1H3,(H,12,13)(H,15,16)/t10-/m0/s1 |
---|
Synonyms | Value | Source |
---|
N-Acetyl-4-hydroxyphenylalanine | ChEBI | N-Acetyltyrosine | ChEBI | (2S)-2-Acetylamino-3-(4-hydroxyphenyl)propanoate | HMDB | (2S)-2-Acetylamino-3-(4-hydroxyphenyl)propanoic acid | HMDB | L-N-Acetyl-tyrosine | HMDB | L-N-Acetyltyrosine | HMDB | N-Acetyl-tyrosine | HMDB | N-Acetyltyrosine, (DL)-isomer | HMDB | Acetyl-L-tyrosine | HMDB | N-Acetyltyrosine, (D)-isomer | HMDB |
|
---|
Chemical Formula | C11H13NO4 |
---|
Average Molecular Weight | 223.2252 |
---|
Monoisotopic Molecular Weight | 223.084457909 |
---|
IUPAC Name | (2S)-2-acetamido-3-(4-hydroxyphenyl)propanoic acid |
---|
Traditional Name | acetyl-L-tyrosine |
---|
CAS Registry Number | 537-55-3 |
---|
SMILES | CC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O |
---|
InChI Identifier | InChI=1S/C11H13NO4/c1-7(13)12-10(11(15)16)6-8-2-4-9(14)5-3-8/h2-5,10,14H,6H2,1H3,(H,12,13)(H,15,16)/t10-/m0/s1 |
---|
InChI Key | CAHKINHBCWCHCF-JTQLQIEISA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as tyrosine and derivatives. Tyrosine and derivatives are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Tyrosine and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Tyrosine or derivatives
- Phenylalanine or derivatives
- N-acyl-alpha-amino acid
- N-acyl-alpha amino acid or derivatives
- N-acyl-l-alpha-amino acid
- 3-phenylpropanoic-acid
- Amphetamine or derivatives
- 1-hydroxy-2-unsubstituted benzenoid
- Phenol
- Monocyclic benzene moiety
- Benzenoid
- Acetamide
- Carboxamide group
- Secondary carboxylic acid amide
- Monocarboxylic acid or derivatives
- Carboxylic acid
- Organooxygen compound
- Organonitrogen compound
- Hydrocarbon derivative
- Organic nitrogen compound
- Organic oxide
- Carbonyl group
- Organopnictogen compound
- Organic oxygen compound
- Aromatic homomonocyclic compound
|
---|
Molecular Framework | Aromatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | |
---|
Process | Not Available |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | |
---|
Experimental Chromatographic Properties | Experimental Collision Cross Sections |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatizedDerivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
---|
N-Acetyl-L-tyrosine,1TMS,isomer #1 | CC(=O)N[C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O | 2105.8 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,1TMS,isomer #2 | CC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C | 2087.0 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,1TMS,isomer #3 | CC(=O)N([C@@H](CC1=CC=C(O)C=C1)C(=O)O)[Si](C)(C)C | 2091.8 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,2TMS,isomer #1 | CC(=O)N[C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C | 2110.9 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,2TMS,isomer #2 | CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O)[Si](C)(C)C | 2079.7 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,2TMS,isomer #3 | CC(=O)N([C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2015.4 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,3TMS,isomer #1 | CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2102.5 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,3TMS,isomer #1 | CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2132.9 | Standard non polar | 33892256 | N-Acetyl-L-tyrosine,3TMS,isomer #1 | CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2295.4 | Standard polar | 33892256 | N-Acetyl-L-tyrosine,1TBDMS,isomer #1 | CC(=O)N[C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O | 2358.3 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,1TBDMS,isomer #2 | CC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C(C)(C)C | 2323.7 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,1TBDMS,isomer #3 | CC(=O)N([C@@H](CC1=CC=C(O)C=C1)C(=O)O)[Si](C)(C)C(C)(C)C | 2358.3 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,2TBDMS,isomer #1 | CC(=O)N[C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C | 2605.1 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,2TBDMS,isomer #2 | CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O)[Si](C)(C)C(C)(C)C | 2627.8 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,2TBDMS,isomer #3 | CC(=O)N([C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2532.2 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,3TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2815.7 | Semi standard non polar | 33892256 | N-Acetyl-L-tyrosine,3TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2762.8 | Standard non polar | 33892256 | N-Acetyl-L-tyrosine,3TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2658.0 | Standard polar | 33892256 |
|
---|
Spectra |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental GC-MS | GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (3 TMS) | splash10-02t9-1790000000-9484167b29dc57768b67 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (2 TMS) | splash10-004i-1921000000-91d4d68bb345a8a8a747 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized) | splash10-02t9-1790000000-9484167b29dc57768b67 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized) | splash10-004i-1921000000-91d4d68bb345a8a8a747 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized) - 70eV, Positive | splash10-052f-9810000000-1b2e358b53063de15d83 | 2017-08-28 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (2 TMS) - 70eV, Positive | splash10-0uml-9574000000-9aeba0b3dc5069db4126 | 2017-10-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_1_1) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_1_2) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_1_3) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_2_2) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_2_3) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_1_2) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_1_3) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_2_1) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_2_2) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_2_3) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine Quattro_QQQ 10V, Positive-QTOF (Annotated) | splash10-0059-0900000000-1a298550f3c63022066c | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine Quattro_QQQ 25V, Positive-QTOF (Annotated) | splash10-000i-1900000000-489314daf5773f9fa91e | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine Quattro_QQQ 40V, Positive-QTOF (Annotated) | splash10-0006-9300000000-3a02844e3f23883a2818 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Positive-QTOF | splash10-000i-1900000000-c90d231f8d22d9f26ddc | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Positive-QTOF | splash10-000i-0900000000-ccea38bdb004d86be263 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Positive-QTOF | splash10-000l-2900000000-318d79dc731f181122e3 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 30V, Positive-QTOF | splash10-0006-9500000000-5884fdc7247228527651 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Positive-QTOF | splash10-00kr-5900000000-9612848117c7c187b999 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 0V, Positive-QTOF | splash10-0072-8940000000-b6f543bf9466f5d0a83f | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 30V, Positive-QTOF | splash10-0006-9300000000-b45eebbf975e26ab166b | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 0V, Positive-QTOF | splash10-00dr-1940000000-33b69b7977f9d9af1050 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 30V, Negative-QTOF | splash10-0a4i-9600000000-a990ee67ce972fd9112e | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Negative-QTOF | splash10-0a59-6900000000-faa99ebaf3b7d2305237 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Negative-QTOF | splash10-0a4l-9300000000-0995fa9131d49c7c9568 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 30V, Positive-QTOF | splash10-00ko-6900000000-2dc778488fd30e78d38a | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Negative-QTOF | splash10-0089-2940000000-9ba200b376edff696810 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Positive-QTOF | splash10-0006-9100000000-28b05f6697d1910b23f9 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Positive-QTOF | splash10-0006-9200000000-9bcdc6b13b9c4ec88928 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Positive-QTOF | splash10-000i-0900000000-7301664a6d8d33145cdf | 2021-09-20 | HMDB team, MONA | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Positive-QTOF | splash10-05gi-0960000000-521b33c688de6d5af3c6 | 2017-07-25 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Positive-QTOF | splash10-0540-0910000000-11b06e8237181862ad09 | 2017-07-25 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Positive-QTOF | splash10-0a4i-4900000000-0ed4f6b83b0e699609da | 2017-07-25 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Negative-QTOF | splash10-00di-1690000000-1c3495d31ad780bf247c | 2017-07-26 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Negative-QTOF | splash10-05ir-4920000000-04fd94657e89950888ef | 2017-07-26 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Negative-QTOF | splash10-052f-9400000000-a5cd6e5756fee449095e | 2017-07-26 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Experimental 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | 2012-12-04 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-24 | Wishart Lab | View Spectrum | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | 2012-12-05 | Wishart Lab | View Spectrum |
|
---|
Biological Properties |
---|
Cellular Locations | - Cytoplasm (predicted from logP)
|
---|
Biospecimen Locations | |
---|
Tissue Locations | Not Available |
---|
Pathways | |
---|
Normal Concentrations |
---|
| |
Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | Urine | Detected and Quantified | 0 umol/mmol creatinine | Adult (>18 years old) | Both | Normal | | details | Urine | Detected and Quantified | 1.600 (0-6.400) umol/mmol creatinine | Infant (0-1 year old) | Both | Normal | | details | Urine | Detected and Quantified | 0.22 (0.1-0.55) umol/mmol creatinine | Newborn (0-30 days old) | Both | Normal | | details | Urine | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | Urine | Detected and Quantified | <10 umol/mmol creatinine | Children (1 - 18 years old) | Both | Normal | | details |
|
---|
Abnormal Concentrations |
---|
| |
Blood | Detected and Quantified | 331.0 +/- 74.0 uM | Newborn (0-30 days old) | Both | Preterm birth | | details | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Colorectal Cancer | | details | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Colorectal cancer | | details | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Colorectal cancer | | details | Urine | Detected and Quantified | 1.6 (0-6.4) umol/mmol creatinine | Infant (0-1 year old) | Both | Tyrosinemia I | | details | Urine | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Colorectal adenoma | | details | Urine | Detected and Quantified | 1.00 (0.00-2.00) umol/mmol creatinine | Adult (>18 years old) | Both | Tyrosinemia I | | details | Urine | Detected and Quantified | 10 +/- 2 umol/mmol creatinine | Infant (0-1 year old) | Male | Aromatic L-amino acid decarboxylase deficiency | | details | Urine | Detected and Quantified | 75 (0-781) umol/mmol creatinine | Newborn (0-30 days old) | Both | Tyrosinemia I | | details | Urine | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Autosomal dominant polycystic kidney disease (ADPKD) | | details |
|
---|
Associated Disorders and Diseases |
---|
Disease References | Preterm birth |
---|
- Van Goudoever JB, Sulkers EJ, Timmerman M, Huijmans JG, Langer K, Carnielli VP, Sauer PJ: Amino acid solutions for premature neonates during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine. JPEN J Parenter Enteral Nutr. 1994 Sep-Oct;18(5):404-8. [PubMed:7815670 ]
| Colorectal cancer |
---|
- Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
- Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
- Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
| Aromatic L-amino acid decarboxylase deficiency |
---|
- Abdenur JE, Abeling N, Specola N, Jorge L, Schenone AB, van Cruchten AC, Chamoles NA: Aromatic l-aminoacid decarboxylase deficiency: unusual neonatal presentation and additional findings in organic acid analysis. Mol Genet Metab. 2006 Jan;87(1):48-53. Epub 2005 Nov 9. [PubMed:16288991 ]
| Tyrosinemia I |
---|
- G.Frauendienst-Egger, Friedrich K. Trefz (2017). MetaGene: Metabolic & Genetic Information Center (MIC: http://www.metagene.de). METAGENE consortium.
- Blau N, Duran M, Blaskovics ME, Gibson KM (2003). Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd ed. Berlin, Germany, Springer, 2003. Springer.
| Autosomal dominant polycystic kidney disease |
---|
- Gronwald W, Klein MS, Zeltner R, Schulze BD, Reinhold SW, Deutschmann M, Immervoll AK, Boger CA, Banas B, Eckardt KU, Oefner PJ: Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine. Kidney Int. 2011 Jun;79(11):1244-53. doi: 10.1038/ki.2011.30. Epub 2011 Mar 9. [PubMed:21389975 ]
|
|
---|
Associated OMIM IDs | - 114500 (Colorectal cancer)
- 608643 (Aromatic L-amino acid decarboxylase deficiency)
- 276700 (Tyrosinemia I)
- 601313 (Autosomal dominant polycystic kidney disease)
|
---|
External Links |
---|
DrugBank ID | DB11102 |
---|
Phenol Explorer Compound ID | Not Available |
---|
FooDB ID | FDB022288 |
---|
KNApSAcK ID | Not Available |
---|
Chemspider ID | 61606 |
---|
KEGG Compound ID | C01657 |
---|
BioCyc ID | Not Available |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | N-Acetyl-L-tyrosine |
---|
METLIN ID | Not Available |
---|
PubChem Compound | 68310 |
---|
PDB ID | Not Available |
---|
ChEBI ID | 21563 |
---|
Food Biomarker Ontology | Not Available |
---|
VMH ID | Not Available |
---|
MarkerDB ID | MDB00000270 |
---|
Good Scents ID | rw1097521 |
---|
References |
---|
Synthesis Reference | Liu, Aifu. Preparation of N-acetyl-L-tyrosine. Faming Zhuanli Shenqing Gongkai Shuomingshu (2005), 5 pp. |
---|
Material Safety Data Sheet (MSDS) | Download (PDF) |
---|
General References | - Sass JO, Mohr V, Olbrich H, Engelke U, Horvath J, Fliegauf M, Loges NT, Schweitzer-Krantz S, Moebus R, Weiler P, Kispert A, Superti-Furga A, Wevers RA, Omran H: Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism. Am J Hum Genet. 2006 Mar;78(3):401-9. Epub 2006 Jan 18. [PubMed:16465618 ]
- Rao NR, Bhat PG, Pattabiraman TN: Estimation of serum alpha 2-macroglobulin based on the esterolytic activity of bound alpha-chymotrypsin. Biochem Med. 1984 Dec;32(3):357-63. [PubMed:6083782 ]
- Hoffer LJ, Sher K, Saboohi F, Bernier P, MacNamara EM, Rinzler D: N-acetyl-L-tyrosine as a tyrosine source in adult parenteral nutrition. JPEN J Parenter Enteral Nutr. 2003 Nov-Dec;27(6):419-22. [PubMed:14621123 ]
- Dietze EC, Grillo MP, Kalhorn T, Nieslanik BS, Jochheim CM, Atkins WM: Thiol ester hydrolysis catalyzed by glutathione S-transferase A1-1. Biochemistry. 1998 Oct 20;37(42):14948-57. [PubMed:9778372 ]
- Druml W, Hubl W, Roth E, Lochs H: Utilization of tyrosine-containing dipeptides and N-acetyl-tyrosine in hepatic failure. Hepatology. 1995 Apr;21(4):923-8. [PubMed:7705801 ]
- Van Goudoever JB, Sulkers EJ, Timmerman M, Huijmans JG, Langer K, Carnielli VP, Sauer PJ: Amino acid solutions for premature neonates during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine. JPEN J Parenter Enteral Nutr. 1994 Sep-Oct;18(5):404-8. [PubMed:7815670 ]
- Drabik G, Naskalski JW: Chlorination of N-acetyltyrosine with HOCl, chloramines, and myeloperoxidase-hydrogen peroxide-chloride system. Acta Biochim Pol. 2001;48(1):271-5. [PubMed:11440179 ]
- Fu S, Wang H, Davies M, Dean R: Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine. J Biol Chem. 2000 Apr 14;275(15):10851-8. [PubMed:10753880 ]
- Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015. [PubMed:26317986 ]
- Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T: NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 2011 Jul;7(7):e1002169. doi: 10.1371/journal.pgen.1002169. Epub 2011 Jul 7. [PubMed:21750686 ]
- Ree R, Varland S, Arnesen T: Spotlight on protein N-terminal acetylation. Exp Mol Med. 2018 Jul 27;50(7):1-13. doi: 10.1038/s12276-018-0116-z. [PubMed:30054468 ]
- Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T: Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010 Sep;33(9):944-52. doi: 10.1038/hr.2010.113. Epub 2010 Jul 8. [PubMed:20613759 ]
- Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J: A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008 May;19(5):863-70. doi: 10.1681/ASN.2007121377. Epub 2008 Feb 20. [PubMed:18287557 ]
- Matsumura T, Uryu O, Matsuhisa F, Tajiri K, Matsumoto H, Hayakawa Y: N-acetyl-l-tyrosine is an intrinsic triggering factor of mitohormesis in stressed animals. EMBO Rep. 2020 May 6;21(5):e49211. doi: 10.15252/embr.201949211. Epub 2020 Mar 2. [PubMed:32118349 ]
- Hayakawa Y: N-acetyltyrosine-induced redox signaling in hormesis. Biochim Biophys Acta Mol Cell Res. 2021 May;1868(6):118990. doi: 10.1016/j.bbamcr.2021.118990. Epub 2021 Feb 20. [PubMed:33617888 ]
|
---|