Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2023-05-30 20:55:51 UTC
HMDB IDHMDB0000866
Secondary Accession Numbers
  • HMDB00866
Metabolite Identification
Common NameN-Acetyl-L-tyrosine
DescriptionN-Acetyl-L-tyrosine or N-Acetyltyrosine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltyrosine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltyrosine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tyrosine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618 ). About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686 ). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468 ). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468 ). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltyrosine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618 ). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tyrosine can also occur. Many N-acetylamino acids, including N-acetyltyrosine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986 ; PMID: 20613759 ). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557 ). N-Acetyl-L-tyrosine, has also been associated with several inborn metabolic disorders including tyrosinemia I and aromatic l-amino acid decarboxylase deficiency. N-acetyltyrosine, is used in place of as a tyrosine precursor and administered as a source of nutritional support where oral nutrition is inadequate or cannot be tolerated (PMID: 14621123 ). N-acetyltyrosine has also been identified as an endogenous stress response factor. Under stress conditions, mitochondria release low levels of reactive oxygen species (ROS), which triggers a cytoprotective response, called "mitohormesis". N-acetyltyrosine has recently been identified as an intrinsic triggering factor of mitohormesis in stressed animals (PMID: 32118349 ). Interventions and small molecules, which promote formation of reactive oxygen species (ROS), have been shown to increase stress resistance and lifespan of different model organisms. These phenotypes occur only in response to low concentrations of ROS, while higher concentrations of ROS exert opposing effects. In this regard, a stress-dependent increase in N-acetyltyrosine was recently found to occur in insect larvae that had endured high temperatures (i.e. thermal stress). N-acetyltyrosine treatment has also been demonstrated to induce thermotolerance in several tested insect species. N-acetyltyrosine has been identified in the serum of humans as well as mice, and its concentration in mice was shown to be increased by heat stress, with N-acetyltyrosine pretreatment lowering the concentrations of corticosterone and peroxidized lipids in heat stressed mice (PMID: 33617888 ).
Structure
Data?1582752161
Synonyms
ValueSource
N-Acetyl-4-hydroxyphenylalanineChEBI
N-AcetyltyrosineChEBI
(2S)-2-Acetylamino-3-(4-hydroxyphenyl)propanoateHMDB
(2S)-2-Acetylamino-3-(4-hydroxyphenyl)propanoic acidHMDB
L-N-Acetyl-tyrosineHMDB
L-N-AcetyltyrosineHMDB
N-Acetyl-tyrosineHMDB
N-Acetyltyrosine, (DL)-isomerHMDB
Acetyl-L-tyrosineHMDB
N-Acetyltyrosine, (D)-isomerHMDB
Chemical FormulaC11H13NO4
Average Molecular Weight223.2252
Monoisotopic Molecular Weight223.084457909
IUPAC Name(2S)-2-acetamido-3-(4-hydroxyphenyl)propanoic acid
Traditional Nameacetyl-L-tyrosine
CAS Registry Number537-55-3
SMILES
CC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O
InChI Identifier
InChI=1S/C11H13NO4/c1-7(13)12-10(11(15)16)6-8-2-4-9(14)5-3-8/h2-5,10,14H,6H2,1H3,(H,12,13)(H,15,16)/t10-/m0/s1
InChI KeyCAHKINHBCWCHCF-JTQLQIEISA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as tyrosine and derivatives. Tyrosine and derivatives are compounds containing tyrosine or a derivative thereof resulting from reaction of tyrosine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentTyrosine and derivatives
Alternative Parents
Substituents
  • Tyrosine or derivatives
  • Phenylalanine or derivatives
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • N-acyl-l-alpha-amino acid
  • 3-phenylpropanoic-acid
  • Amphetamine or derivatives
  • 1-hydroxy-2-unsubstituted benzenoid
  • Phenol
  • Monocyclic benzene moiety
  • Benzenoid
  • Acetamide
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Organooxygen compound
  • Organonitrogen compound
  • Hydrocarbon derivative
  • Organic nitrogen compound
  • Organic oxide
  • Carbonyl group
  • Organopnictogen compound
  • Organic oxygen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point149 - 152 °CNot Available
Boiling Point530.00 to 533.00 °C. @ 760.00 mm HgThe Good Scents Company Information System
Water Solubility297 mg/mLNot Available
LogP1.320The Good Scents Company Information System
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-MetCCS_train_neg149.44230932474
[M-H]-Not Available149.442http://allccs.zhulab.cn/database/detail?ID=AllCCS00000037
Predicted Molecular Properties
PropertyValueSource
Water Solubility2.51 g/LALOGPS
logP1.03ALOGPS
logP0.59ChemAxon
logS-2ALOGPS
pKa (Strongest Acidic)3.67ChemAxon
pKa (Strongest Basic)-2ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area86.63 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity56.54 m³·mol⁻¹ChemAxon
Polarizability22.25 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+153.56731661259
DarkChem[M-H]-149.59331661259
AllCCS[M+H]+150.1732859911
AllCCS[M-H]-149.81832859911
DeepCCS[M+H]+150.04730932474
DeepCCS[M-H]-147.65130932474
DeepCCS[M-2H]-180.69130932474
DeepCCS[M+Na]+156.01530932474
AllCCS[M+H]+150.232859911
AllCCS[M+H-H2O]+146.432859911
AllCCS[M+NH4]+153.732859911
AllCCS[M+Na]+154.732859911
AllCCS[M-H]-149.832859911
AllCCS[M+Na-2H]-150.232859911
AllCCS[M+HCOO]-150.832859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
N-Acetyl-L-tyrosineCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O3604.7Standard polar33892256
N-Acetyl-L-tyrosineCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O2108.4Standard non polar33892256
N-Acetyl-L-tyrosineCC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O2187.9Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
N-Acetyl-L-tyrosine,1TMS,isomer #1CC(=O)N[C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O2105.8Semi standard non polar33892256
N-Acetyl-L-tyrosine,1TMS,isomer #2CC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C2087.0Semi standard non polar33892256
N-Acetyl-L-tyrosine,1TMS,isomer #3CC(=O)N([C@@H](CC1=CC=C(O)C=C1)C(=O)O)[Si](C)(C)C2091.8Semi standard non polar33892256
N-Acetyl-L-tyrosine,2TMS,isomer #1CC(=O)N[C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C2110.9Semi standard non polar33892256
N-Acetyl-L-tyrosine,2TMS,isomer #2CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O)[Si](C)(C)C2079.7Semi standard non polar33892256
N-Acetyl-L-tyrosine,2TMS,isomer #3CC(=O)N([C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C)[Si](C)(C)C2015.4Semi standard non polar33892256
N-Acetyl-L-tyrosine,3TMS,isomer #1CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C)[Si](C)(C)C2102.5Semi standard non polar33892256
N-Acetyl-L-tyrosine,3TMS,isomer #1CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C)[Si](C)(C)C2132.9Standard non polar33892256
N-Acetyl-L-tyrosine,3TMS,isomer #1CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C)C=C1)C(=O)O[Si](C)(C)C)[Si](C)(C)C2295.4Standard polar33892256
N-Acetyl-L-tyrosine,1TBDMS,isomer #1CC(=O)N[C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O2358.3Semi standard non polar33892256
N-Acetyl-L-tyrosine,1TBDMS,isomer #2CC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C(C)(C)C2323.7Semi standard non polar33892256
N-Acetyl-L-tyrosine,1TBDMS,isomer #3CC(=O)N([C@@H](CC1=CC=C(O)C=C1)C(=O)O)[Si](C)(C)C(C)(C)C2358.3Semi standard non polar33892256
N-Acetyl-L-tyrosine,2TBDMS,isomer #1CC(=O)N[C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C2605.1Semi standard non polar33892256
N-Acetyl-L-tyrosine,2TBDMS,isomer #2CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O)[Si](C)(C)C(C)(C)C2627.8Semi standard non polar33892256
N-Acetyl-L-tyrosine,2TBDMS,isomer #3CC(=O)N([C@@H](CC1=CC=C(O)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C2532.2Semi standard non polar33892256
N-Acetyl-L-tyrosine,3TBDMS,isomer #1CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C2815.7Semi standard non polar33892256
N-Acetyl-L-tyrosine,3TBDMS,isomer #1CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C2762.8Standard non polar33892256
N-Acetyl-L-tyrosine,3TBDMS,isomer #1CC(=O)N([C@@H](CC1=CC=C(O[Si](C)(C)C(C)(C)C)C=C1)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C2658.0Standard polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (3 TMS)splash10-02t9-1790000000-9484167b29dc57768b672014-06-16HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (2 TMS)splash10-004i-1921000000-91d4d68bb345a8a8a7472014-06-16HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized)splash10-02t9-1790000000-9484167b29dc57768b672017-09-12HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized)splash10-004i-1921000000-91d4d68bb345a8a8a7472017-09-12HMDB team, MONA, MassBankView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized) - 70eV, Positivesplash10-052f-9810000000-1b2e358b53063de15d832017-08-28Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (2 TMS) - 70eV, Positivesplash10-0uml-9574000000-9aeba0b3dc5069db41262017-10-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_1_1) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_1_2) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_1_3) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_2_2) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TMS_2_3) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_1_1) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_1_2) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_1_3) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_2_1) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_2_2) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetyl-L-tyrosine GC-MS (TBDMS_2_3) - 70eV, PositiveNot Available2021-11-06Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine Quattro_QQQ 10V, Positive-QTOF (Annotated)splash10-0059-0900000000-1a298550f3c63022066c2012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine Quattro_QQQ 25V, Positive-QTOF (Annotated)splash10-000i-1900000000-489314daf5773f9fa91e2012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine Quattro_QQQ 40V, Positive-QTOF (Annotated)splash10-0006-9300000000-3a02844e3f23883a28182012-07-24HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Positive-QTOFsplash10-000i-1900000000-c90d231f8d22d9f26ddc2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Positive-QTOFsplash10-000i-0900000000-ccea38bdb004d86be2632021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Positive-QTOFsplash10-000l-2900000000-318d79dc731f181122e32021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 30V, Positive-QTOFsplash10-0006-9500000000-5884fdc72472285276512021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Positive-QTOFsplash10-00kr-5900000000-9612848117c7c187b9992021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 0V, Positive-QTOFsplash10-0072-8940000000-b6f543bf9466f5d0a83f2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 30V, Positive-QTOFsplash10-0006-9300000000-b45eebbf975e26ab166b2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 0V, Positive-QTOFsplash10-00dr-1940000000-33b69b7977f9d9af10502021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 30V, Negative-QTOFsplash10-0a4i-9600000000-a990ee67ce972fd9112e2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Negative-QTOFsplash10-0a59-6900000000-faa99ebaf3b7d23052372021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Negative-QTOFsplash10-0a4l-9300000000-0995fa9131d49c7c95682021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 30V, Positive-QTOFsplash10-00ko-6900000000-2dc778488fd30e78d38a2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Negative-QTOFsplash10-0089-2940000000-9ba200b376edff6968102021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Positive-QTOFsplash10-0006-9100000000-28b05f6697d1910b23f92021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Positive-QTOFsplash10-0006-9200000000-9bcdc6b13b9c4ec889282021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Positive-QTOFsplash10-000i-0900000000-7301664a6d8d33145cdf2021-09-20HMDB team, MONAView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Positive-QTOFsplash10-05gi-0960000000-521b33c688de6d5af3c62017-07-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Positive-QTOFsplash10-0540-0910000000-11b06e8237181862ad092017-07-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Positive-QTOFsplash10-0a4i-4900000000-0ed4f6b83b0e699609da2017-07-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 10V, Negative-QTOFsplash10-00di-1690000000-1c3495d31ad780bf247c2017-07-26Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 20V, Negative-QTOFsplash10-05ir-4920000000-04fd94657e89950888ef2017-07-26Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetyl-L-tyrosine 40V, Negative-QTOFsplash10-052f-9400000000-a5cd6e5756fee449095e2017-07-26Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Experimental 1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, experimental)2012-12-04Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-24Wishart LabView Spectrum
Experimental 2D NMR[1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental)2012-12-05Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm (predicted from logP)
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
UrineDetected and Quantified0 umol/mmol creatinineAdult (>18 years old)BothNormal
    • Physician's Guide...
details
UrineDetected and Quantified1.600 (0-6.400) umol/mmol creatinineInfant (0-1 year old)BothNormal
    • Physician's Guide...
details
UrineDetected and Quantified0.22 (0.1-0.55) umol/mmol creatinineNewborn (0-30 days old)Both
Normal
    • Analysis of 40 NI...
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineDetected and Quantified<10 umol/mmol creatinineChildren (1 - 18 years old)Both
Normal
    • BC Children's Hos...
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified331.0 +/- 74.0 uMNewborn (0-30 days old)BothPreterm birth details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
UrineDetected and Quantified1.6 (0-6.4) umol/mmol creatinineInfant (0-1 year old)Both
Tyrosinemia I
    • Physician's Guide...
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal adenoma
details
UrineDetected and Quantified1.00 (0.00-2.00) umol/mmol creatinineAdult (>18 years old)BothTyrosinemia I
    • MetaGene: Metabol...
details
UrineDetected and Quantified10 +/- 2 umol/mmol creatinineInfant (0-1 year old)MaleAromatic L-amino acid decarboxylase deficiency details
UrineDetected and Quantified75 (0-781) umol/mmol creatinineNewborn (0-30 days old)Both
Tyrosinemia I
    • Physician's Guide...
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothAutosomal dominant polycystic kidney disease (ADPKD) details
Associated Disorders and Diseases
Disease References
Preterm birth
  1. Van Goudoever JB, Sulkers EJ, Timmerman M, Huijmans JG, Langer K, Carnielli VP, Sauer PJ: Amino acid solutions for premature neonates during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine. JPEN J Parenter Enteral Nutr. 1994 Sep-Oct;18(5):404-8. [PubMed:7815670 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Aromatic L-amino acid decarboxylase deficiency
  1. Abdenur JE, Abeling N, Specola N, Jorge L, Schenone AB, van Cruchten AC, Chamoles NA: Aromatic l-aminoacid decarboxylase deficiency: unusual neonatal presentation and additional findings in organic acid analysis. Mol Genet Metab. 2006 Jan;87(1):48-53. Epub 2005 Nov 9. [PubMed:16288991 ]
Tyrosinemia I
  1. G.Frauendienst-Egger, Friedrich K. Trefz (2017). MetaGene: Metabolic & Genetic Information Center (MIC: http://www.metagene.de). METAGENE consortium.
  2. Blau N, Duran M, Blaskovics ME, Gibson KM (2003). Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd ed. Berlin, Germany, Springer, 2003. Springer.
Autosomal dominant polycystic kidney disease
  1. Gronwald W, Klein MS, Zeltner R, Schulze BD, Reinhold SW, Deutschmann M, Immervoll AK, Boger CA, Banas B, Eckardt KU, Oefner PJ: Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine. Kidney Int. 2011 Jun;79(11):1244-53. doi: 10.1038/ki.2011.30. Epub 2011 Mar 9. [PubMed:21389975 ]
Associated OMIM IDs
  • 114500 (Colorectal cancer)
  • 608643 (Aromatic L-amino acid decarboxylase deficiency)
  • 276700 (Tyrosinemia I)
  • 601313 (Autosomal dominant polycystic kidney disease)
DrugBank IDDB11102
Phenol Explorer Compound IDNot Available
FooDB IDFDB022288
KNApSAcK IDNot Available
Chemspider ID61606
KEGG Compound IDC01657
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkN-Acetyl-L-tyrosine
METLIN IDNot Available
PubChem Compound68310
PDB IDNot Available
ChEBI ID21563
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDMDB00000270
Good Scents IDrw1097521
References
Synthesis ReferenceLiu, Aifu. Preparation of N-acetyl-L-tyrosine. Faming Zhuanli Shenqing Gongkai Shuomingshu (2005), 5 pp.
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Sass JO, Mohr V, Olbrich H, Engelke U, Horvath J, Fliegauf M, Loges NT, Schweitzer-Krantz S, Moebus R, Weiler P, Kispert A, Superti-Furga A, Wevers RA, Omran H: Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism. Am J Hum Genet. 2006 Mar;78(3):401-9. Epub 2006 Jan 18. [PubMed:16465618 ]
  2. Rao NR, Bhat PG, Pattabiraman TN: Estimation of serum alpha 2-macroglobulin based on the esterolytic activity of bound alpha-chymotrypsin. Biochem Med. 1984 Dec;32(3):357-63. [PubMed:6083782 ]
  3. Hoffer LJ, Sher K, Saboohi F, Bernier P, MacNamara EM, Rinzler D: N-acetyl-L-tyrosine as a tyrosine source in adult parenteral nutrition. JPEN J Parenter Enteral Nutr. 2003 Nov-Dec;27(6):419-22. [PubMed:14621123 ]
  4. Dietze EC, Grillo MP, Kalhorn T, Nieslanik BS, Jochheim CM, Atkins WM: Thiol ester hydrolysis catalyzed by glutathione S-transferase A1-1. Biochemistry. 1998 Oct 20;37(42):14948-57. [PubMed:9778372 ]
  5. Druml W, Hubl W, Roth E, Lochs H: Utilization of tyrosine-containing dipeptides and N-acetyl-tyrosine in hepatic failure. Hepatology. 1995 Apr;21(4):923-8. [PubMed:7705801 ]
  6. Van Goudoever JB, Sulkers EJ, Timmerman M, Huijmans JG, Langer K, Carnielli VP, Sauer PJ: Amino acid solutions for premature neonates during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine. JPEN J Parenter Enteral Nutr. 1994 Sep-Oct;18(5):404-8. [PubMed:7815670 ]
  7. Drabik G, Naskalski JW: Chlorination of N-acetyltyrosine with HOCl, chloramines, and myeloperoxidase-hydrogen peroxide-chloride system. Acta Biochim Pol. 2001;48(1):271-5. [PubMed:11440179 ]
  8. Fu S, Wang H, Davies M, Dean R: Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine. J Biol Chem. 2000 Apr 14;275(15):10851-8. [PubMed:10753880 ]
  9. Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015. [PubMed:26317986 ]
  10. Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T: NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 2011 Jul;7(7):e1002169. doi: 10.1371/journal.pgen.1002169. Epub 2011 Jul 7. [PubMed:21750686 ]
  11. Ree R, Varland S, Arnesen T: Spotlight on protein N-terminal acetylation. Exp Mol Med. 2018 Jul 27;50(7):1-13. doi: 10.1038/s12276-018-0116-z. [PubMed:30054468 ]
  12. Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T: Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010 Sep;33(9):944-52. doi: 10.1038/hr.2010.113. Epub 2010 Jul 8. [PubMed:20613759 ]
  13. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J: A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008 May;19(5):863-70. doi: 10.1681/ASN.2007121377. Epub 2008 Feb 20. [PubMed:18287557 ]
  14. Matsumura T, Uryu O, Matsuhisa F, Tajiri K, Matsumoto H, Hayakawa Y: N-acetyl-l-tyrosine is an intrinsic triggering factor of mitohormesis in stressed animals. EMBO Rep. 2020 May 6;21(5):e49211. doi: 10.15252/embr.201949211. Epub 2020 Mar 2. [PubMed:32118349 ]
  15. Hayakawa Y: N-acetyltyrosine-induced redox signaling in hormesis. Biochim Biophys Acta Mol Cell Res. 2021 May;1868(6):118990. doi: 10.1016/j.bbamcr.2021.118990. Epub 2021 Feb 20. [PubMed:33617888 ]