Hmdb loader
Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2006-05-22 14:17:36 UTC
Update Date2022-03-07 02:49:12 UTC
HMDB IDHMDB0002100
Secondary Accession Numbers
  • HMDB02100
Metabolite Identification
Common NamePalmitoylethanolamide
DescriptionN-Palmitoylethanolamide (PEA) is present in the tissues of most mammals. It was initially described as an agonist of the type 2 cannabinoid receptor (CB2), although it is now universally recognized that PEA is in fact incapable of binding to cannabinoid receptors, or at least not to the known receptors. In addition to its anti-inflammatory activity, PEA also produces analgesia, neuroprotection, and possesses anti-epileptic properties. It also reduces gastrointestinal motility and cancer cell proliferation, as well as protecting the vascular endothelium in the ischemic heart. The physiological stimuli that regulate PEA levels in mammalian tissues are largely unknown, however, multiple studies indicate that this lipid accumulates during cellular stress, particularly following tissue injury. For example, PEA increases post-mortem in the pig brain. Similar elevations in PEA levels have been observed in the ischemic brain and PEA is also up-regulated in response to ultraviolet-B irradiation in mouse epidermal cells. Adipose tissue is highly implicated in the systemic secretion of IL-6 and leptin, and human mature adipocytes are able to secrete large quantity of PEA. Human adipose tissue can be subjected to modulation of its inflammatory state by lipopolysaccharide (LPS). LPS strongly inhibits adipose cell leptin release, with PEA acting as a potentiator of this inhibitory effect. These actions are not linked to a reduction in leptin gene transcription. Thus, PEA does not have an anti-inflammatory role in the secretion of IL-6 via NFkappaB at the adipocyte level, but instead seems to act at the heart of the LPS-stimulated pathway, which, independently of NFkappaB, inhibits the secretion of leptin. (PMID: 16884908 ).
Structure
Thumb
Synonyms
Chemical FormulaC18H37NO2
Average Molecular Weight299.4919
Monoisotopic Molecular Weight299.282429433
IUPAC NameN-(2-hydroxyethyl)hexadecanamide
Traditional Namepalmitoylethanolamide
CAS Registry Number544-31-0
SMILES
CCCCCCCCCCCCCCCC(=O)NCCO
InChI Identifier
InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)19-16-17-20/h20H,2-17H2,1H3,(H,19,21)
InChI KeyHXYVTAGFYLMHSO-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as carboximidic acids. These are organic acids with the general formula RC(=N)-OH (R=H, organic group).
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboximidic acids and derivatives
Sub ClassCarboximidic acids
Direct ParentCarboximidic acids
Alternative Parents
Substituents
  • Organic 1,3-dipolar compound
  • Propargyl-type 1,3-dipolar organic compound
  • Carboximidic acid
  • Alkanolamine
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Primary alcohol
  • Organooxygen compound
  • Organonitrogen compound
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point98.5 °CNot Available
Boiling Point461.50 °C. @ 760.00 mm Hg (est)The Good Scents Company Information System
Water Solubility0.44 mg/L @ 25 °C (est)The Good Scents Company Information System
LogP5.820 (est)The Good Scents Company Information System
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Urine
Tissue Locations
  • Placenta
Pathways
Normal Concentrations
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB001087
KNApSAcK IDNot Available
Chemspider ID4509
KEGG Compound IDC16512
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkPalmitoylethanolamide
METLIN IDNot Available
PubChem Compound4671
PDB IDNot Available
ChEBI ID71464
Food Biomarker OntologyNot Available
VMH IDPMETH
MarkerDB IDNot Available
Good Scents IDrw1301821
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Hoareau L, Ravanan P, Gonthier MP, Delarue P, Goncalves J, Cesari M, Festy F, Roche R: Effect of PEA on LPS inflammatory action in human adipocytes. Cytokine. 2006 Jun;34(5-6):291-6. Epub 2006 Aug 1. [PubMed:16884908 ]
  2. Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Drager A, Mih N, Gatto F, Nilsson A, Preciat Gonzalez GA, Aurich MK, Prlic A, Sastry A, Danielsdottir AD, Heinken A, Noronha A, Rose PW, Burley SK, Fleming RMT, Nielsen J, Thiele I, Palsson BO: Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol. 2018 Mar;36(3):272-281. doi: 10.1038/nbt.4072. Epub 2018 Feb 19. [PubMed:29457794 ]
  3. Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]