Record Information |
---|
Version | 5.0 |
---|
Status | Expected but not Quantified |
---|
Creation Date | 2021-09-23 22:35:58 UTC |
---|
Update Date | 2021-09-23 22:35:59 UTC |
---|
HMDB ID | HMDB0303013 |
---|
Secondary Accession Numbers | None |
---|
Metabolite Identification |
---|
Common Name | Lutein ester |
---|
Description | Lutein, also known as all-trans-lutein or 3,3'-dihydroxy-alpha-carotene, is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Lutein is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Lutein can be found in dandelion and ginkgo nuts, which makes lutein a potential biomarker for the consumption of these food products. Lutein can be found primarily in blood, as well as throughout most human tissues. Lutein exists in all eukaryotes, ranging from yeast to humans. Lutein is isomeric with zeaxanthin, differing only in the placement of one double bond. Lutein and zeaxanthin can be interconverted in the body through an intermediate called meso-zeaxanthin. The principal natural stereoisomer of lutein is (3R,3′R,6′R)-beta,epsilon-carotene-3,3′-diol. Lutein is a lipophilic molecule and is generally insoluble in water. The presence of the long chromophore of conjugated double bonds (polyene chain) provides the distinctive light-absorbing properties. The polyene chain is susceptible to oxidative degradation by light or heat and is chemically unstable in acids . |
---|
Structure | O[C@@H]1CC(C)=C(\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]2C(C)=CC(O)CC2(C)C)C(C)(C)C1 InChI=1S/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-25,35-37,41-42H,26-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35?,36-,37+/m1/s1 |
---|
Synonyms | Value | Source |
---|
3,3'-Dihydroxy-alpha-carotene | HMDB | all-trans-(+)-Xanthophyll | HMDB | all-trans-Lutein | HMDB | beta,epsilon-Carotene-3,3'-diol | HMDB | bo-Xan | HMDB | Lutein ester | HMDB | Luteine | HMDB | trans-Lutein | HMDB | Vegetable lutein | HMDB | Vegetable luteol | HMDB | Lutein F | MeSH, HMDB | Lutein g | MeSH, HMDB | Lutein, gamma | MeSH, HMDB | gamma Lutein | MeSH, HMDB |
|
---|
Chemical Formula | C40H56O2 |
---|
Average Molecular Weight | 568.8714 |
---|
Monoisotopic Molecular Weight | 568.428031036 |
---|
IUPAC Name | (1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1R)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol |
---|
Traditional Name | (1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1R)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-ol |
---|
CAS Registry Number | Not Available |
---|
SMILES | O[C@@H]1CC(C)=C(\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\[C@H]2C(C)=CC(O)CC2(C)C)C(C)(C)C1 |
---|
InChI Identifier | InChI=1S/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-25,35-37,41-42H,26-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35?,36-,37+/m1/s1 |
---|
InChI Key | KBPHJBAIARWVSC-RTIVXWJOSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Prenol lipids |
---|
Sub Class | Tetraterpenoids |
---|
Direct Parent | Xanthophylls |
---|
Alternative Parents | |
---|
Substituents | - Xanthophyll
- Secondary alcohol
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic homomonocyclic compound
|
---|
Molecular Framework | Aliphatic homomonocyclic compounds |
---|
External Descriptors | Not Available |
---|
Ontology |
---|
Physiological effect | Not Available |
---|
Disposition | |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesNot Available |
---|