Hmdb loader
Show more...Show more...Show more...
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2008-09-24 10:45:43 UTC
Update Date2022-11-30 19:03:54 UTC
HMDB IDHMDB0010566
Secondary Accession Numbers
  • HMDB10566
Metabolite Identification
Common NamePE-NMe2(16:0/16:0)
DescriptionPE-NMe2(16:0/16:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions.PE-NMe2(16:0/16:0), in particular, consists of two hexadecanoyl chain at positions C-1 and C2. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.
Structure
Thumb
Synonyms
ValueSource
DP(Me)2-peMeSH
alpha-Dimethyl dipalmitoylphosphatidylethanolamineMeSH
L-alpha-Dipalmitoyl(dimethyl)phosphatidylethanolamineMeSH
Chemical FormulaC39H78NO8P
Average Molecular Weight720.0123
Monoisotopic Molecular Weight719.546504989
IUPAC Name[(2R)-2,3-bis(hexadecanoyloxy)propoxy][2-(dimethylamino)ethoxy]phosphinic acid
Traditional Name(2R)-2,3-bis(hexadecanoyloxy)propoxy(2-(dimethylamino)ethoxy)phosphinic acid
CAS Registry NumberNot Available
SMILES
[H][C@@](COC(=O)CCCCCCCCCCCCCCC)(COP(O)(=O)OCCN(C)C)OC(=O)CCCCCCCCCCCCCCC
InChI Identifier
InChI=1S/C39H78NO8P/c1-5-7-9-11-13-15-17-19-21-23-25-27-29-31-38(41)45-35-37(36-47-49(43,44)46-34-33-40(3)4)48-39(42)32-30-28-26-24-22-20-18-16-14-12-10-8-6-2/h37H,5-36H2,1-4H3,(H,43,44)/t37-/m1/s1
InChI KeySKWDCOTXHWCSGS-DIPNUNPCSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as dimethylphosphatidylethanolamines. These are lipids with a structure containing a glycerol moiety linked at its terminal C3 atom to a N,N-dimethylphosphoethanolamine group, and at its C1 and C2 terminal atoms by an acyl group.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphoethanolamines
Direct ParentDimethylphosphatidylethanolamines
Alternative Parents
Substituents
  • Dimethylphosphatidylethanolamine
  • Phosphoethanolamine
  • Fatty acid ester
  • Dialkyl phosphate
  • Dicarboxylic acid or derivatives
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Alkyl phosphate
  • Fatty acyl
  • Tertiary aliphatic amine
  • Tertiary amine
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Amine
  • Organic nitrogen compound
  • Organopnictogen compound
  • Carbonyl group
  • Organic oxide
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Membrane (predicted from logP)
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB027716
KNApSAcK IDNot Available
Chemspider ID7825971
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound9547021
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
  6. Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
  7. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
  8. Jean E. Vance (2008). Thematic Review Series: Glycerolipids. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. The Journal of Lipid Research, 49, 1377-1387..