Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2009-03-18 09:33:52 UTC
Update Date2023-05-30 20:55:53 UTC
HMDB IDHMDB0011757
Secondary Accession Numbers
  • HMDB11757
Metabolite Identification
Common NameN-Acetylvaline
DescriptionN-Acetyl-L-valine or N-Acetylvaline, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetylvaline can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetylvaline is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-valine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618 ). About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686 ). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468 ). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468 ). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetylvaline can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618 ). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free valine can also occur. Excessive amounts N-acetyl amino acids including N-acetylvaline(as well as N-acetylglycine, N-acetylserine, N-acetylmethionine, N-acetylglutamate, N-acetylalanine, N-acetylleucine and smaller amounts of N-acetylglutamine, N-acetylisoleucine, and N-acetylthreonine) can be detected in the urine with individuals with acylase I deficiency, a genetic disorder (PMID: 16465618 ). Aminoacylase I is a soluble homodimeric zinc binding enzyme that catalyzes the formation of free aliphatic amino acids from N-acetylated precursors. In humans, Aminoacylase I is encoded by the aminoacylase 1 gene (ACY1) on chromosome 3p21 that consists of 15 exons (OMIM 609924 ). Individuals with aminoacylase I deficiency will experience convulsions, hearing loss and difficulty feeding (PMID: 16465618 ). ACY1 can also catalyze the reverse reaction, the synthesis of acetylated amino acids. Many N-acetylamino acids, including N-acetylthreonine, are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986 ; PMID: 20613759 ). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557 ).
Structure
Data?1676999857
Synonyms
ValueSource
(2S)-2-Acetamido-3-methylbutanoic acidChEBI
(2S)-2-Acetamido-3-methylbutanoateGenerator
N-Acetylvaline, (L)-isomerHMDB
N-Acetyl-DL-valineHMDB
N-Acetylvaline, (D)-isomerHMDB
Acetyl-valHMDB
N-Acetyl-D,L-valineHMDB
(S)-2-Acetamido-3-methylbutanoic acidHMDB
2-Acetamido-3-methylbutanoic acidHMDB
AcetylvalineHMDB
L-N-AcetylvalineHMDB
N-Acetyl-L-valineHMDB
N-AcetylvalineChEBI
Chemical FormulaC7H13NO3
Average Molecular Weight159.185
Monoisotopic Molecular Weight159.089543283
IUPAC Name(2S)-2-acetamido-3-methylbutanoic acid
Traditional NameL-valine, N-acetyl-
CAS Registry Number96-81-1
SMILES
CC(C)[C@H](NC(C)=O)C(O)=O
InChI Identifier
InChI=1S/C7H13NO3/c1-4(2)6(7(10)11)8-5(3)9/h4,6H,1-3H3,(H,8,9)(H,10,11)/t6-/m0/s1
InChI KeyIHYJTAOFMMMOPX-LURJTMIESA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as valine and derivatives. Valine and derivatives are compounds containing valine or a derivative thereof resulting from reaction of valine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentValine and derivatives
Alternative Parents
Substituents
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Valine or derivatives
  • N-acyl-l-alpha-amino acid
  • Branched fatty acid
  • Methyl-branched fatty acid
  • Fatty acyl
  • Fatty acid
  • Acetamide
  • Carboxamide group
  • Secondary carboxylic acid amide
  • Carboxylic acid
  • Monocarboxylic acid or derivatives
  • Organonitrogen compound
  • Organic oxide
  • Organopnictogen compound
  • Organic nitrogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Organooxygen compound
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water Solubility37.1 at 25 °CNot Available
LogP0.30MEYLAN,WM & HOWARD,PH (1995)
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility25.6 g/LALOGPS
logP0.29ALOGPS
logP0.13ChemAxon
logS-0.79ALOGPS
pKa (Strongest Acidic)4.11ChemAxon
pKa (Strongest Basic)-1.6ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area66.4 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity38.94 m³·mol⁻¹ChemAxon
Polarizability16.27 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+133.38230932474
DeepCCS[M-H]-129.55430932474
DeepCCS[M-2H]-166.88230932474
DeepCCS[M+Na]+142.42130932474

Predicted Retention Times

Underivatized

Chromatographic MethodRetention TimeReference
Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022.2.52 minutes32390414
Predicted by Siyang on May 30, 202210.2659 minutes33406817
Predicted by Siyang using ReTip algorithm on June 8, 20222.91 minutes32390414
AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid100.8 seconds40023050
Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid1265.0 seconds40023050
Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid306.6 seconds40023050
Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid82.3 seconds40023050
Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid169.5 seconds40023050
RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid55.7 seconds40023050
Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid282.0 seconds40023050
BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid365.0 seconds40023050
HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate)92.5 seconds40023050
UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid677.7 seconds40023050
BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid297.0 seconds40023050
UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid997.4 seconds40023050
SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid203.3 seconds40023050
RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid231.8 seconds40023050
MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate428.0 seconds40023050
KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA242.7 seconds40023050
Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water139.0 seconds40023050

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
N-AcetylvalineCC(C)[C@H](NC(C)=O)C(O)=O2205.5Standard polar33892256
N-AcetylvalineCC(C)[C@H](NC(C)=O)C(O)=O1346.8Standard non polar33892256
N-AcetylvalineCC(C)[C@H](NC(C)=O)C(O)=O1396.6Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
N-Acetylvaline,1TMS,isomer #1CC(=O)N[C@H](C(=O)O[Si](C)(C)C)C(C)C1362.9Semi standard non polar33892256
N-Acetylvaline,1TMS,isomer #2CC(=O)N([C@H](C(=O)O)C(C)C)[Si](C)(C)C1360.4Semi standard non polar33892256
N-Acetylvaline,2TMS,isomer #1CC(=O)N([C@H](C(=O)O[Si](C)(C)C)C(C)C)[Si](C)(C)C1380.2Semi standard non polar33892256
N-Acetylvaline,2TMS,isomer #1CC(=O)N([C@H](C(=O)O[Si](C)(C)C)C(C)C)[Si](C)(C)C1378.4Standard non polar33892256
N-Acetylvaline,2TMS,isomer #1CC(=O)N([C@H](C(=O)O[Si](C)(C)C)C(C)C)[Si](C)(C)C1509.4Standard polar33892256
N-Acetylvaline,1TBDMS,isomer #1CC(=O)N[C@H](C(=O)O[Si](C)(C)C(C)(C)C)C(C)C1589.3Semi standard non polar33892256
N-Acetylvaline,1TBDMS,isomer #2CC(=O)N([C@H](C(=O)O)C(C)C)[Si](C)(C)C(C)(C)C1594.9Semi standard non polar33892256
N-Acetylvaline,2TBDMS,isomer #1CC(=O)N([C@H](C(=O)O[Si](C)(C)C(C)(C)C)C(C)C)[Si](C)(C)C(C)(C)C1843.8Semi standard non polar33892256
N-Acetylvaline,2TBDMS,isomer #1CC(=O)N([C@H](C(=O)O[Si](C)(C)C(C)(C)C)C(C)C)[Si](C)(C)C(C)(C)C1815.6Standard non polar33892256
N-Acetylvaline,2TBDMS,isomer #1CC(=O)N([C@H](C(=O)O[Si](C)(C)C(C)(C)C)C(C)C)[Si](C)(C)C(C)(C)C1833.1Standard polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental GC-MSGC-MS Spectrum - N-Acetylvaline EI-B (Non-derivatized)splash10-03di-0910000000-eb15d3e402321f301a5b2019-11-14HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetylvaline GC-EI-TOF (Non-derivatized)splash10-03di-1900000000-f13ad129a67fb49cd5f12019-11-14HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetylvaline EI-B (Non-derivatized)splash10-03di-0910000000-eb15d3e402321f301a5b2019-11-14HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - N-Acetylvaline GC-EI-TOF (Non-derivatized)splash10-03di-1900000000-f13ad129a67fb49cd5f12019-11-14HMDB team, MONA, MassBankView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Acetylvaline GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetylvaline 10V, Positive-QTOFsplash10-03di-2900000000-62b894411c752f8b084d2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetylvaline 20V, Positive-QTOFsplash10-074j-9400000000-ca68eb9560bb85f3f0a32021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetylvaline 40V, Positive-QTOFsplash10-052f-9000000000-93cbf0596455b06e21772021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetylvaline 10V, Negative-QTOFsplash10-014i-0900000000-8a3ea4752da910c1d6aa2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetylvaline 20V, Negative-QTOFsplash10-014i-2900000000-20d16dff6f6a857ac3b22021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Acetylvaline 40V, Negative-QTOFsplash10-0006-9000000000-a172b952357a691920512021-09-22Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, D2O, predicted)2021-09-25Wishart LabView Spectrum

IR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M-H]-)2023-02-03FELIX labView Spectrum
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+)2023-02-03FELIX labView Spectrum
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+)2023-02-03FELIX labView Spectrum
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue Locations
  • Placenta
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedNormal details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
UrineDetected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedNormal details
UrineDetected and Quantified0.73 (0.53-0.83) umol/mmol creatinineNewborn (0-30 days old)Both
Normal
    • Analysis of 40 NI...
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB028427
KNApSAcK IDNot Available
Chemspider ID60154
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound66789
PDB IDNot Available
ChEBI ID21565
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Sass JO, Mohr V, Olbrich H, Engelke U, Horvath J, Fliegauf M, Loges NT, Schweitzer-Krantz S, Moebus R, Weiler P, Kispert A, Superti-Furga A, Wevers RA, Omran H: Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism. Am J Hum Genet. 2006 Mar;78(3):401-9. Epub 2006 Jan 18. [PubMed:16465618 ]
  2. Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
  3. Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015. [PubMed:26317986 ]
  4. Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T: NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 2011 Jul;7(7):e1002169. doi: 10.1371/journal.pgen.1002169. Epub 2011 Jul 7. [PubMed:21750686 ]
  5. Ree R, Varland S, Arnesen T: Spotlight on protein N-terminal acetylation. Exp Mol Med. 2018 Jul 27;50(7):1-13. doi: 10.1038/s12276-018-0116-z. [PubMed:30054468 ]
  6. Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T: Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010 Sep;33(9):944-52. doi: 10.1038/hr.2010.113. Epub 2010 Jul 8. [PubMed:20613759 ]
  7. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J: A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008 May;19(5):863-70. doi: 10.1681/ASN.2007121377. Epub 2008 Feb 20. [PubMed:18287557 ]