Hmdb loader
Read more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2009-03-25 15:15:54 UTC
Update Date2022-08-16 22:05:49 UTC
HMDB IDHMDB0012108
Secondary Accession Numbers
  • HMDB12108
Metabolite Identification
Common NameLysoPC(17:0/0:0)
Description
Structure
Thumb
Synonyms
Chemical FormulaC25H52NO7P
Average Molecular Weight509.6566
Monoisotopic Molecular Weight509.348139535
IUPAC Name(2-{[(2R)-3-(heptadecanoyloxy)-2-hydroxypropyl phosphono]oxy}ethyl)trimethylazanium
Traditional Name(2-{[(2R)-3-(heptadecanoyloxy)-2-hydroxypropyl phosphono]oxy}ethyl)trimethylazanium
CAS Registry Number50930-23-9
SMILES
CCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C
InChI Identifier
InChI=1S/C25H52NO7P/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-25(28)31-22-24(27)23-33-34(29,30)32-21-20-26(2,3)4/h24,27H,5-23H2,1-4H3/t24-/m1/s1
InChI KeySRRQPVVYXBTRQK-XMMPIXPASA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as 1-acyl-sn-glycero-3-phosphocholines. These are glycerophosphocholines in which the glycerol is esterified with a fatty acid at O-1 position, and linked at position 3 to a phosphocholine.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphocholines
Direct Parent1-acyl-sn-glycero-3-phosphocholines
Alternative Parents
Substituents
  • 1-acyl-sn-glycero-3-phosphocholine
  • Phosphocholine
  • Fatty acid ester
  • Dialkyl phosphate
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Alkyl phosphate
  • Fatty acyl
  • Tetraalkylammonium salt
  • Quaternary ammonium salt
  • Secondary alcohol
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Alcohol
  • Organic oxygen compound
  • Organopnictogen compound
  • Carbonyl group
  • Organic salt
  • Amine
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.24(0.1-0.8) uMAdult (>18 years old)BothSepsis details
BloodDetected and Quantified1.8811 (1.9996) uMAdult (>18 years old)FemalePregnancy with fetus having congenital heart defect details
BloodDetected and Quantified2.6388 (0.8126) uMAdult (>18 years old)FemalePregnancy details
UrineDetected and Quantified0.0039 +/- 0.0026 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Eosinophilic esophagitis
    • Analysis of 30 no...
details
UrineDetected and Quantified0.0053 +/- 0.0103 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Gastroesophageal reflux disease
    • Analysis of 30 no...
details
Associated Disorders and Diseases
Disease References
Pregnancy
  1. Bahado-Singh RO, Ertl R, Mandal R, Bjorndahl TC, Syngelaki A, Han B, Dong E, Liu PB, Alpay-Savasan Z, Wishart DS, Nicolaides KH: Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol. 2014 Sep;211(3):240.e1-240.e14. doi: 10.1016/j.ajog.2014.03.056. Epub 2014 Apr 1. [PubMed:24704061 ]
Sepsis
  1. Ferrario M, Cambiaghi A, Brunelli L, Giordano S, Caironi P, Guatteri L, Raimondi F, Gattinoni L, Latini R, Masson S, Ristagno G, Pastorelli R: Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach. Sci Rep. 2016 Feb 5;6:20391. doi: 10.1038/srep20391. [PubMed:26847922 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB028772
KNApSAcK IDNot Available
Chemspider ID24694752
KEGG Compound IDC04230
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound24779463
PDB IDNot Available
ChEBI ID74340
Food Biomarker OntologyNot Available
VMH IDPCHOLHEP_HS
MarkerDB IDMDB00000848
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Cai S, Huo T, Li N, Xiong Z, Li F: Lysophosphatidylcholine--biomarker of Metformin action: studied using UPLC/MS/MS. Biomed Chromatogr. 2009 Jul;23(7):782-6. doi: 10.1002/bmc.1185. [PubMed:19309761 ]
  2. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  3. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  4. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  5. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  6. Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
  7. Wernly B, Lichtenauer M, Hoppe UC, Jung C: Hyperglycemia in septic patients: an essential stress survival response in all, a robust marker for risk stratification in some, to be messed with in none. J Thorac Dis. 2016 Jul;8(7):E621-4. doi: 10.21037/jtd.2016.05.24. [PubMed:27501420 ]
  8. Knuplez E, Marsche G: An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci. 2020 Jun 24;21(12). pii: ijms21124501. doi: 10.3390/ijms21124501. [PubMed:32599910 ]
  9. Sun JK, Sun F, Wang X, Yuan ST, Zheng SY, Mu XW: Risk factors and prognosis of hypoalbuminemia in surgical septic patients. PeerJ. 2015 Oct 1;3:e1267. doi: 10.7717/peerj.1267. eCollection 2015. [PubMed:26557421 ]
  10. Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
  11. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 15 proteins in total.

Enzymes

General function:
Involved in metabolic process
Specific function:
Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response.
Gene Name:
PLA2G4A
Uniprot ID:
P47712
Molecular weight:
85210.19
General function:
Involved in sugar binding
Specific function:
May have both lysophospholipase and carbohydrate-binding activities.
Gene Name:
CLC
Uniprot ID:
Q05315
Molecular weight:
16452.785
General function:
Involved in 1-alkyl-2-acetylglycerophosphocholine esterase activity
Specific function:
Modulates the action of platelet-activating factor (PAF) by hydrolyzing the sn-2 ester bond to yield the biologically inactive lyso-PAF. Has a specificity for substrates with a short residue at the sn-2 position. It is inactive against long-chain phospholipids.
Gene Name:
PLA2G7
Uniprot ID:
Q13093
Molecular weight:
50076.99
General function:
Involved in hydrolase activity
Specific function:
Inactivates paf by removing the acetyl group at the sn-2 position. This is a catalytic subunit. Plays an important role during the development of brain.
Gene Name:
PAFAH1B3
Uniprot ID:
Q15102
Molecular weight:
25734.13
General function:
Involved in hydrolase activity
Specific function:
Inactivates PAF by removing the acetyl group at the sn-2 position. This is a catalytic subunit.
Gene Name:
PAFAH1B2
Uniprot ID:
P68402
Molecular weight:
22733.715
General function:
Involved in 1-alkyl-2-acetylglycerophosphocholine esterase activity
Specific function:
Has a marked selectivity for phospholipids with short acyl chains at the sn-2 position. May share a common physiologic function with the plasma-type enzyme.
Gene Name:
PAFAH2
Uniprot ID:
Q99487
Molecular weight:
44035.255
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
Receptor for medium and long chain saturated and unsaturated fatty acids. Binding of the ligand increase intracellular calcium concentration and amplify glucose-stimulated insulin secretion. The activity of this receptor is mediated by G- proteins that activate phospholipase C. Seems to act through a G(q) and G(i)-mediated pathway
Gene Name:
FFAR1
Uniprot ID:
O14842
Molecular weight:
31456.6
General function:
Involved in 1-acylglycerophosphocholine O-acyltransfera
Specific function:
Acyltransferase which mediates the conversion of lysophosphatidylcholine (1-acyl-sn-glycero-3-phosphocholine or LPC) into phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) (LPCAT activity). Catalyzes also the conversion of lysophosphatidylserine (1-acyl-2-hydroxy-sn-glycero-3-phospho-L-serine or LPS) into phosphatidylserine (1,2-diacyl-sn-glycero-3-phospho-L-serine or PS) (LPSAT activity). Has also weak lysophosphatidylethanolamine acyltransferase activity (LPEAT activity). Favors polyunsaturated fatty acyl-CoAs as acyl donors compared to saturated fatty acyl-CoAs. Seems to be the major enzyme contributing to LPCAT activity in the liver. Lysophospholipid acyltransferases (LPLATs) catalyze the reacylation step of the phospholipid remodeling pathway also known as the Lands cycle.
Gene Name:
LPCAT3
Uniprot ID:
Q6P1A2
Molecular weight:
56034.48
General function:
Involved in acyltransferase activity
Specific function:
Possesses both acyltransferase and acetyltransferase activities. Activity is calcium-independent. Mediates the conversion of 1-acyl-sn-glycero-3-phosphocholine (LPC) into phosphatidylcholine (PC). Displays a clear preference for saturated fatty acyl-CoAs, and 1-myristoyl or 1-palmitoyl LPC as acyl donors and acceptors, respectively. May synthesize phosphatidylcholine in pulmonary surfactant, thereby playing a pivotal role in respiratory physiology.
Gene Name:
LPCAT1
Uniprot ID:
Q8NF37
Molecular weight:
59150.675
General function:
Involved in acyltransferase activity
Specific function:
Possesses both acyltransferase and acetyltransferase activities. Activity is calcium-dependent. Involved in platelet-activating factor (PAF) biosynthesis by catalyzing the conversion of the PAF precursor, 1-O-alkyl-sn-glycero-3-phosphocholine (lyso-PAF) into 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF). Also converts lyso-PAF to 1-alkyl-phosphatidylcholine (PC), a major component of cell membranes and a PAF precursor. Under resting conditions, acyltransferase activity is preferred. Upon acute inflammatory stimulus, acetyltransferase activity is enhanced and PAF synthesis increases (By similarity).
Gene Name:
LPCAT2
Uniprot ID:
Q7L5N7
Molecular weight:
60207.295

Only showing the first 10 proteins. There are 15 proteins in total.