Hmdb loader
Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-06 15:16:50 UTC
Update Date2022-03-07 02:51:44 UTC
HMDB IDHMDB0014760
Secondary Accession Numbers
  • HMDB14760
Metabolite Identification
Common NameNicardipine
DescriptionNicardipine, also known as cardene or flusemide, belongs to the class of organic compounds known as dihydropyridinecarboxylic acids and derivatives. Dihydropyridinecarboxylic acids and derivatives are compounds containing a dihydropyridine moiety bearing a carboxylic acid group. Nicardipine is a drug which is used for the management of patients with chronic stable angina and for the treatment of hypertension. The patent for both Cardene and Cardene SR expired in October 1995. Nicardipine is a very strong basic compound (based on its pKa). It belongs to the dihydropyridine class of calcium channel blockers. It was patented in 1973 and approved for medical use in 1981. It has been used in percutaneous coronary intervention. Its mechanism of action and clinical effects closely resemble those of nifedipine and the other dihydropyridines (amlodipine, felodipine), except that nicardipine is more selective for cerebral and coronary blood vessels. Nicardipine (Cardene) is a medication used to treat high blood pressure and angina. Nicardipine was approved by the FDA in December 1988.
Structure
Thumb
Synonyms
Chemical FormulaC26H29N3O6
Average Molecular Weight479.525
Monoisotopic Molecular Weight479.205635675
IUPAC Name3-{2-[benzyl(methyl)amino]ethyl} 5-methyl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate
Traditional Namenicardipine
CAS Registry Number55985-32-5
SMILES
COC(=O)C1=C(C)NC(C)=C(C1C1=CC(=CC=C1)[N+]([O-])=O)C(=O)OCCN(C)CC1=CC=CC=C1
InChI Identifier
InChI=1S/C26H29N3O6/c1-17-22(25(30)34-4)24(20-11-8-12-21(15-20)29(32)33)23(18(2)27-17)26(31)35-14-13-28(3)16-19-9-6-5-7-10-19/h5-12,15,24,27H,13-14,16H2,1-4H3
InChI KeyZBBHBTPTTSWHBA-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as dihydropyridinecarboxylic acids and derivatives. Dihydropyridinecarboxylic acids and derivatives are compounds containing a dihydropyridine moiety bearing a carboxylic acid group.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassPyridines and derivatives
Sub ClassHydropyridines
Direct ParentDihydropyridinecarboxylic acids and derivatives
Alternative Parents
Substituents
  • Dihydropyridinecarboxylic acid derivative
  • Nitrobenzene
  • Nitroaromatic compound
  • Benzylamine
  • Phenylmethylamine
  • Aralkylamine
  • Monocyclic benzene moiety
  • Dicarboxylic acid or derivatives
  • Benzenoid
  • Methyl ester
  • Vinylogous amide
  • Enoate ester
  • Alpha,beta-unsaturated carboxylic ester
  • Amino acid or derivatives
  • Carboxylic acid ester
  • C-nitro compound
  • Tertiary amine
  • Tertiary aliphatic amine
  • Organic nitro compound
  • Allyl-type 1,3-dipolar organic compound
  • Secondary amine
  • Azacycle
  • Propargyl-type 1,3-dipolar organic compound
  • Organic 1,3-dipolar compound
  • Organic oxoazanium
  • Carboxylic acid derivative
  • Secondary aliphatic amine
  • Enamine
  • Organic nitrogen compound
  • Organic oxide
  • Organopnictogen compound
  • Amine
  • Hydrocarbon derivative
  • Organic oxygen compound
  • Carbonyl group
  • Organic zwitterion
  • Organonitrogen compound
  • Organooxygen compound
  • Aromatic heteromonocyclic compound
Molecular FrameworkAromatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point136 - 138 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.0025 g/LNot Available
LogP3.6Not Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M+H]+CBM212.130932474
[M+H]+Not Available211.875http://allccs.zhulab.cn/database/detail?ID=AllCCS00000967
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Membrane
Biospecimen Locations
  • Blood
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00622 details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00622 details
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00622
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID4319
KEGG Compound IDC07264
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNicardipine
METLIN IDNot Available
PubChem Compound4474
PDB IDNot Available
ChEBI ID507549
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Only showing the first 10 proteins. There are 24 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes. Has a higher affinity for cGMP than for cAMP.
Gene Name:
PDE1A
Uniprot ID:
P54750
Molecular weight:
61251.38
References
  1. Sharma RK, Wang JH, Wu Z: Mechanisms of inhibition of calmodulin-stimulated cyclic nucleotide phosphodiesterase by dihydropyridine calcium antagonists. J Neurochem. 1997 Aug;69(2):845-50. [PubMed:9231746 ]
General function:
Involved in catalytic activity
Specific function:
Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes. Has a preference for cGMP as a substrate.
Gene Name:
PDE1B
Uniprot ID:
Q01064
Molecular weight:
61379.235
References
  1. Sharma RK, Wang JH, Wu Z: Mechanisms of inhibition of calmodulin-stimulated cyclic nucleotide phosphodiesterase by dihydropyridine calcium antagonists. J Neurochem. 1997 Aug;69(2):845-50. [PubMed:9231746 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
CYP2C19
Uniprot ID:
P33261
Molecular weight:
55944.565
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A5
Uniprot ID:
P20815
Molecular weight:
57108.065
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]

Transporters

General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Katoh M, Nakajima M, Yamazaki H, Yokoi T: Inhibitory potencies of 1,4-dihydropyridine calcium antagonists to P-glycoprotein-mediated transport: comparison with the effects on CYP3A4. Pharm Res. 2000 Oct;17(10):1189-97. [PubMed:11145223 ]
  2. Lentz KA, Polli JW, Wring SA, Humphreys JE, Polli JE: Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res. 2000 Dec;17(12):1456-60. [PubMed:11303953 ]
  3. Wang EJ, Casciano CN, Clement RP, Johnson WW: Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001 Nov 30;289(2):580-5. [PubMed:11716514 ]
  4. Takara K, Sakaeda T, Tanigawara Y, Nishiguchi K, Ohmoto N, Horinouchi M, Komada F, Ohnishi N, Yokoyama T, Okumura K: Effects of 12 Ca2+ antagonists on multidrug resistance, MDR1-mediated transport and MDR1 mRNA expression. Eur J Pharm Sci. 2002 Aug;16(3):159-65. [PubMed:12128170 ]
  5. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J: Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003 Apr 24;46(9):1716-25. [PubMed:12699389 ]
  6. Ibrahim S, Peggins J, Knapton A, Licht T, Aszalos A: Influence of antipsychotic, antiemetic, and Ca(2+) channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation. J Pharmacol Exp Ther. 2000 Dec;295(3):1276-83. [PubMed:11082465 ]
  7. Polli JW, Wring SA, Humphreys JE, Huang L, Morgan JB, Webster LO, Serabjit-Singh CS: Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther. 2001 Nov;299(2):620-8. [PubMed:11602674 ]

Only showing the first 10 proteins. There are 24 proteins in total.