Hmdb loader
Show more...Show more...Show more...
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-06 15:16:52 UTC
Update Date2022-03-07 02:52:00 UTC
HMDB IDHMDB0015513
Secondary Accession Numbers
  • HMDB15513
Metabolite Identification
Common NameFludiazepam
DescriptionFludiazepam, also known as erispan, belongs to the class of organic compounds known as 1,4-benzodiazepines. These are organic compounds containing a benzene ring fused to a 1,4-azepine. Fludiazepam is a drug which is used for the short-term treatment of anxiety disorders. Fludiazepam is a moderately basic compound (based on its pKa). It exerts its pharmacological properties via enhancement of GABAergic inhibition. Fludiazepam is a potentially toxic compound. It is marketed in Japan and Taiwan. Fludiazepam has been used recreationally. Fludiazepam, marketed under the brand name Erispan (エリスパン) is a potent benzodiazepine and 2ʹ-fluoro derivative of diazepam, originally developed by Hoffman-La Roche in the 1960s. Fludiazepam has 4 times more binding affinity for benzodiazepine receptors than diazepam. It possesses anxiolytic, anticonvulsant, sedative, hypnotic and skeletal muscle relaxant properties.
Structure
Data?1582753305
Synonyms
ValueSource
7-Chloro-5-(O-fluorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-oneChEBI
ErispanChEBI
FludiazepanHMDB
1-Methyl-5-(2-fluorophenyl)-7-chloro-1,3-dihydro-2H-(1,4)benzodiazepin-2-oneHMDB
Chemical FormulaC16H12ClFN2O
Average Molecular Weight302.731
Monoisotopic Molecular Weight302.062218928
IUPAC Name7-chloro-5-(2-fluorophenyl)-1-methyl-2,3-dihydro-1H-1,4-benzodiazepin-2-one
Traditional Namefludiazepam
CAS Registry Number3900-31-0
SMILES
CN1C2=C(C=C(Cl)C=C2)C(=NCC1=O)C1=CC=CC=C1F
InChI Identifier
InChI=1S/C16H12ClFN2O/c1-20-14-7-6-10(17)8-12(14)16(19-9-15(20)21)11-4-2-3-5-13(11)18/h2-8H,9H2,1H3
InChI KeyROYOYTLGDLIGBX-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as 1,4-benzodiazepines. These are organic compounds containing a benzene ring fused to a 1,4-azepine.
KingdomOrganic compounds
Super ClassOrganoheterocyclic compounds
ClassBenzodiazepines
Sub Class1,4-benzodiazepines
Direct Parent1,4-benzodiazepines
Alternative Parents
Substituents
  • 1,4-benzodiazepine
  • Alpha-amino acid or derivatives
  • Fluorobenzene
  • Halobenzene
  • Aryl chloride
  • Aryl fluoride
  • Aryl halide
  • Monocyclic benzene moiety
  • Benzenoid
  • Tertiary carboxylic acid amide
  • Carboxamide group
  • Ketimine
  • Lactam
  • Azacycle
  • Carboxylic acid derivative
  • Organic 1,3-dipolar compound
  • Propargyl-type 1,3-dipolar organic compound
  • Organooxygen compound
  • Imine
  • Organopnictogen compound
  • Organic oxygen compound
  • Organic nitrogen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Organic oxide
  • Organonitrogen compound
  • Organohalogen compound
  • Organochloride
  • Organofluoride
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point295 - 297 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.014 g/LNot Available
LogP2.75HANSCH,C ET AL. (1995)
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Membrane
Biospecimen Locations
  • Blood
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01567 details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB01567 details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiospecimenValueOriginal ageOriginal sexOriginal conditionComments
Blood0.000 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0.000 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB01567
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID3252
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkFludiazepam
METLIN IDNot Available
PubChem Compound3369
PDB IDNot Available
ChEBI ID31618
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
  2. Ishiwata K, Yanai K, Ido T, Miura-Kanno Y, Kawashima K: Synthesis and biodistribution of [11C]fludiazepam for imaging benzodiazepine receptors. Int J Rad Appl Instrum B. 1988;15(4):365-71. [PubMed:2855634 ]

Only showing the first 10 proteins. There are 16 proteins in total.

Enzymes

General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular weight:
54161.8
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular weight:
51801.4
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular weight:
51325.9
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular weight:
55164.1
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular weight:
52145.6
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRB1
Uniprot ID:
P18505
Molecular weight:
54234.1
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRB2
Uniprot ID:
P47870
Molecular weight:
59149.9
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular weight:
54115.0
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRD
Uniprot ID:
O14764
Molecular weight:
50707.8
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]
General function:
Involved in ion transport
Specific function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel
Gene Name:
GABRE
Uniprot ID:
P78334
Molecular weight:
57971.2
References
  1. Nakatsuka I, Shimizu H, Asami Y, Katoh T, Hirose A, Yoshitake A: Benzodiazepines and their metabolites: relationship between binding affinity to the benzodiazepine receptor and pharmacological activity. Life Sci. 1985 Jan 14;36(2):113-9. [PubMed:2857046 ]

Only showing the first 10 proteins. There are 16 proteins in total.