Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2022-03-07 02:48:59 UTC
HMDB IDHMDB0000138
Secondary Accession Numbers
  • HMDB00138
  • HMDB0032596
  • HMDB31818
  • HMDB32596
Metabolite Identification
Common NameGlycocholic acid
DescriptionGlycocholic acid is an acyl glycine and a bile acid-glycine conjugate. It is a secondary bile acid produced by the action of enzymes existing in the microbial flora of the colonic environment. Bacteroides, Bifidobacterium, Clostridium and Lactobacillus are involved in bile acid metabolism and produce glycocholic acid (PMID: 6265737 ; 10629797). In hepatocytes, both primary and secondary bile acids undergo amino acid conjugation at the C-24 carboxylic acid on the side chain, and almost all bile acids in the bile duct therefore exist in a glycine conjugated form (PMID: 16949895 ). More specifically, glycocholic acid or cholylglycine, is a crystalline bile acid involved in the emulsification of fats. It occurs as a sodium salt in the bile of mammals. Its anion is called glycocholate. As the glycine conjugate of cholic acid, this compound acts as a detergent to solubilize fats for absorption and is itself absorbed (PubChem). Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487 , 16037564 , 12576301 , 11907135 ). Glycocholic acid is found to be associated with alpha-1-antitrypsin deficiency, which is an inborn error of metabolism.
Structure
Thumb
Synonyms
Chemical FormulaC26H43NO6
Average Molecular Weight465.6227
Monoisotopic Molecular Weight465.309038113
IUPAC Name2-[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid
Traditional Name[(4R)-4-[(1S,2S,5R,7S,9R,10R,11S,14R,15R,16S)-5,9,16-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]pentanamido]acetic acid
CAS Registry Number475-31-0
SMILES
C[C@H](CCC(O)=NCC(O)=O)[C@H]1CC[C@H]2[C@@H]3[C@H](O)C[C@@H]4C[C@H](O)CC[C@]4(C)[C@H]3C[C@H](O)[C@]12C
InChI Identifier
InChI=1S/C26H43NO6/c1-14(4-7-22(31)27-13-23(32)33)17-5-6-18-24-19(12-21(30)26(17,18)3)25(2)9-8-16(28)10-15(25)11-20(24)29/h14-21,24,28-30H,4-13H2,1-3H3,(H,27,31)(H,32,33)/t14-,15+,16-,17-,18+,19+,20-,21+,24+,25+,26-/m1/s1
InChI KeyRFDAIACWWDREDC-FRVQLJSFSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as glycinated bile acids and derivatives. Glycinated bile acids and derivatives are compounds with a structure characterized by the presence of a glycine linked to a bile acid skeleton.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSteroids and steroid derivatives
Sub ClassBile acids, alcohols and derivatives
Direct ParentGlycinated bile acids and derivatives
Alternative Parents
Substituents
  • Glycinated bile acid
  • Trihydroxy bile acid, alcohol, or derivatives
  • Hydroxy bile acid, alcohol, or derivatives
  • 3-hydroxysteroid
  • 12-hydroxysteroid
  • Hydroxysteroid
  • 3-alpha-hydroxysteroid
  • 7-hydroxysteroid
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Alpha-amino acid or derivatives
  • Cyclic alcohol
  • Secondary alcohol
  • Polyol
  • Propargyl-type 1,3-dipolar organic compound
  • Organic 1,3-dipolar compound
  • Carboximidic acid
  • Monocarboxylic acid or derivatives
  • Carboximidic acid derivative
  • Carboxylic acid derivative
  • Carboxylic acid
  • Organooxygen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organic nitrogen compound
  • Carbonyl group
  • Alcohol
  • Organonitrogen compound
  • Aliphatic homopolycyclic compound
Molecular FrameworkAliphatic homopolycyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Biological locationRoute of exposureSource
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point170 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.0033 mg/mLNot Available
LogP1.65RODA,A ET AL. (1990)
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-MetCCS_train_neg200.57730932474
[M-H]-Not Available200.577http://allccs.zhulab.cn/database/detail?ID=AllCCS00000180
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue Locations
  • Fibroblasts
  • Liver
  • Placenta
  • Prostate
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Hepatobiliary diseases
  1. Rifai K, Ockenga J, Manns MP, Bischoff SC: Repeated administration of a vitamin preparation containing glycocholic acid in patients with hepatobiliary disease. Aliment Pharmacol Ther. 2006 May 1;23(9):1337-45. [PubMed:16629939 ]
Celiac disease
  1. Spiller RC, Frost PF, Stewart JS, Bloom SR, Silk DB: Delayed postprandial plasma bile acid response in coeliac patients with slow mouth-caecum transit. Clin Sci (Lond). 1987 Feb;72(2):217-23. [PubMed:3816078 ]
Biliary atresia
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Choledochal cysts
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Intrahepatic biliary hypoplasia
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Neonatal hepatitis
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Alpha-1-antitrypsin deficiency
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Cystic fibrosis
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Galactosemia type 1
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Chronic active hepatitis
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Glycogen storage disease
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Acute liver failure
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Portal vein obstruction
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Wilson's disease
  1. Matsui A, Psacharopoulos HT, Mowat AP, Portmann B, Murphy GM: Radioimmunoassay of serum glycocholic acid, standard laboratory tests of liver function and liver biopsy findings: comparative study of children with liver disease. J Clin Pathol. 1982 Sep;35(9):1011-7. [PubMed:7119120 ]
Colorectal cancer
  1. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  2. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Crohn's disease
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Ulcerative colitis
  1. Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB012346
KNApSAcK IDC00030410
Chemspider ID9734
KEGG Compound IDC01921
BioCyc IDGLYCOCHOLIC_ACID
BiGG IDNot Available
Wikipedia LinkGlycocholic_acid
METLIN IDNot Available
PubChem Compound10140
PDB IDNot Available
ChEBI ID17687
Food Biomarker OntologyNot Available
VMH IDGCHOLA
MarkerDB IDMDB00000066
Good Scents IDNot Available
References
Synthesis ReferenceCortese, Frank; Bauman, Louis. A synthesis of conjugated bile acids. I. Glycocholic acid. Journal of the American Chemical Society (1935), 57 1393-5.
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in thiolester hydrolase activity
Specific function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular weight:
46298.865
Reactions
Choloyl-CoA + Glycine → Coenzyme A + Glycocholic aciddetails
General function:
Involved in glycine N-acyltransferase activity
Specific function:
Mitochondrial acyltransferase which transfers an acyl group to the N-terminus of glycine and glutamine, although much less efficiently. Can conjugate numerous substrates to form a variety of N-acylglycines, with a preference for benzoyl-CoA over phenylacetyl-CoA as acyl donors. Thereby detoxify xenobiotics, such as benzoic acid or salicylic acid, and endogenous organic acids, such as isovaleric acid.
Gene Name:
GLYAT
Uniprot ID:
Q6IB77
Molecular weight:
18506.33
General function:
Involved in glycine N-acyltransferase activity
Specific function:
Acyltransferase which transfers an acyl group to the N-terminus of glutamine. Can use phenylacetyl-CoA as an acyl donor.
Gene Name:
GLYATL1
Uniprot ID:
Q969I3
Molecular weight:
35100.895
General function:
Involved in glycine N-acyltransferase activity
Specific function:
Mitochondrial acyltransferase which transfers the acyl group to the N-terminus of glycine. Conjugates numerous substrates, such as arachidonoyl-CoA and saturated medium and long-chain acyl-CoAs ranging from chain-length C8:0-CoA to C18:0-CoA, to form a variety of N-acylglycines. Shows a preference for monounsaturated fatty acid oleoyl-CoA (C18:1-CoA) as an acyl donor. Does not exhibit any activity toward C22:6-CoA and chenodeoxycholoyl-CoA, nor toward serine or alanine.
Gene Name:
GLYATL2
Uniprot ID:
Q8WU03
Molecular weight:
34277.055
General function:
Involved in glycine N-acyltransferase activity
Specific function:
Acyltransferase which transfers the acyl group to the N- terminus of glycine
Gene Name:
GLYATL3
Uniprot ID:
Q5SZD4
Molecular weight:
32703.3