Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2012-09-11 18:37:02 UTC |
---|
Update Date | 2022-03-07 02:53:52 UTC |
---|
HMDB ID | HMDB0033844 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | beta-Cryptoxanthin |
---|
Description | beta-Cryptoxanthin has been isolated from abalone, fish eggs, and many higher plants. beta-Cryptoxanthin is a major source of vitamin A, often second only to beta-carotene, and is present in fruits such as oranges, tangerines, and papayas (PMID: 8554331 ). Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Papaya intake was the best food predictor of plasma beta-cryptoxanthin concentrations. Subjects that frequently consumed (i.e. greater or equal to 3 times/day) tropical fruits with at least 50 micro g/100 g beta-cryptoxanthin (e.g. papaya, tangerine, orange, watermelon) had twofold the plasma beta-cryptoxanthin concentrations of those with intakes of less than 4 times/week (PMID: 12368412 ). A modest increase in beta-cryptoxanthin intake, equivalent to one glass of freshly squeezed orange juice per day, is associated with a reduced risk of developing inflammatory disorders such as rheumatoid arthritis (PMID: 16087992 ). Higher prediagnostic serum levels of total carotenoids and beta-cryptoxanthin were associated with lower smoking-related lung cancer risk in middle-aged and older men in Shanghai, China (PMID: 11440962 ). Consistent with inhibition of the lung cancer cell growth, beta-cryptoxanthin induced the mRNA levels of retinoic acid receptor beta (RAR-beta) in BEAS-2B cells, although this effect was less pronounced in A549 cells. Furthermore, beta-cryptoxanthin transactivated the RAR-mediated transcription activity of the retinoic acid response element. These findings suggest a mechanism of anti-proliferative action of beta-cryptoxanthin and indicate that beta-cryptoxanthin may be a promising chemopreventive agent against lung cancer (PMID: 16841329 ). Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum. In a pure form, cryptoxanthin is a red crystalline solid with a metallic lustre. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide. In the human body, cryptoxanthin is converted into vitamin A (retinol) and is therefore considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA. Structurally, cryptoxanthin is closely related to beta-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls. |
---|
Structure | C\C(\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C1=C(C)C[C@@H](O)CC1(C)C InChI=1S/C40H56O/c1-30(18-13-20-32(3)23-25-37-34(5)22-15-27-39(37,7)8)16-11-12-17-31(2)19-14-21-33(4)24-26-38-35(6)28-36(41)29-40(38,9)10/h11-14,16-21,23-26,36,41H,15,22,27-29H2,1-10H3/b12-11+,18-13+,19-14+,25-23+,26-24+,30-16+,31-17+,32-20+,33-21+/t36-/m1/s1 |
---|
Synonyms | Value | Source |
---|
Cryptoxanthin | ChEBI | b-Cryptoxanthin | Generator | Β-cryptoxanthin | Generator | Beta Cryptoxanthin | HMDB | Cryptoxanthins | HMDB | beta-Caroten-3-ol | HMDB | Beta Caroten 3 ol | HMDB | (3R)-Cryptoxanthin | HMDB | (3R)-beta,beta-Caroten-3-ol | HMDB | (3R)-beta-Cryptoxanthin | HMDB | (3R)-Β,β-caroten-3-ol | HMDB | (3R)-Β-cryptoxanthin | HMDB | (R)-all-trans-beta-Caroten-3-ol | HMDB | (R)-all-trans-Β-caroten-3-ol | HMDB | 3-Hydroxy-beta-carotene | HMDB | 3-Hydroxy-β-carotene | HMDB | Caricaxanthin | HMDB | Cryptoxanthine | HMDB | Cryptoxanthol | HMDB | Kryptoxanthin | HMDB | Neo-beta-cryptoxanthin | HMDB | Neo-β-cryptoxanthin | HMDB | all-trans-Cryptoxanthin | HMDB | all-trans-Cryptoxanthol | HMDB | all-trans-Neocryptoxanthin | HMDB | all-trans-Neocryptoxanthol | HMDB | all-trans-beta-Cryptoxanthin | HMDB | all-trans-Β-cryptoxanthin | HMDB | trans-Cryptoxanthin | HMDB | trans-beta-Crytoxanthin | HMDB | trans-Β-crytoxanthin | HMDB | Β-caroten-3-ol | HMDB | beta-Cryptoxanthin | HMDB |
|
---|
Chemical Formula | C40H56O |
---|
Average Molecular Weight | 552.887 |
---|
Monoisotopic Molecular Weight | 552.433116423 |
---|
IUPAC Name | (1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol |
---|
Traditional Name | cryptoxanthin |
---|
CAS Registry Number | 472-70-8 |
---|
SMILES | C\C(\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C1=C(C)C[C@@H](O)CC1(C)C |
---|
InChI Identifier | InChI=1S/C40H56O/c1-30(18-13-20-32(3)23-25-37-34(5)22-15-27-39(37,7)8)16-11-12-17-31(2)19-14-21-33(4)24-26-38-35(6)28-36(41)29-40(38,9)10/h11-14,16-21,23-26,36,41H,15,22,27-29H2,1-10H3/b12-11+,18-13+,19-14+,25-23+,26-24+,30-16+,31-17+,32-20+,33-21+/t36-/m1/s1 |
---|
InChI Key | DMASLKHVQRHNES-FKKUPVFPSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. |
---|
Kingdom | Organic compounds |
---|
Super Class | Lipids and lipid-like molecules |
---|
Class | Prenol lipids |
---|
Sub Class | Tetraterpenoids |
---|
Direct Parent | Xanthophylls |
---|
Alternative Parents | |
---|
Substituents | - Xanthophyll
- Secondary alcohol
- Organic oxygen compound
- Hydrocarbon derivative
- Organooxygen compound
- Alcohol
- Aliphatic homomonocyclic compound
|
---|
Molecular Framework | Aliphatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | Not Available |
---|
Disposition | Not Available |
---|
Process | Not Available |
---|
Role | Not Available |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | |
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatized |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted GC-MS | Predicted GC-MS Spectrum - beta-Cryptoxanthin GC-MS (1 TMS) - 70eV, Positive | Not Available | 2020-06-30 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - beta-Cryptoxanthin GC-MS ("beta-Cryptoxanthin,1TMS,#1" TMS) - 70eV, Positive | Not Available | 2021-10-14 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - beta-Cryptoxanthin GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | 2021-10-15 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QIT 20V, positive-QTOF | splash10-03e2-0000940000-3f294d1b8006a14a01ff | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QIT 1V, positive-QTOF | splash10-0gw0-0000590000-7d729e39216a9256dd6e | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 4V, negative-QTOF | splash10-001i-0100390000-6e3ca267c63ed4a7b967 | 2020-07-21 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 7V, positive-QTOF | splash10-0udi-0410290000-a5c664cfd06c2fdd3324 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 10V, positive-QTOF | splash10-0udi-0510490000-039320bed3c92cf5f088 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 15V, positive-QTOF | splash10-0ik9-1940330000-b3ae219429ec53cbcd4d | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 17V, positive-QTOF | splash10-0ik9-1920320000-485587903906f2b18dcb | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 20V, positive-QTOF | splash10-0901-1930100000-4fd08614a2f7381f53d5 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 23V, positive-QTOF | splash10-0cka-1930000000-7f32a39aee17b0a4d9b7 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 25V, positive-QTOF | splash10-07i2-1920000000-83c4e90e75123b21d4e9 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 27V, positive-QTOF | splash10-0aos-1920000000-689e947f9f91e455db44 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 33V, positive-QTOF | splash10-0avj-2910000000-1f4da5545dbcc6e23443 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QTOF 35V, positive-QTOF | splash10-0apj-2910000000-2880fa73a258081c1514 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QqQ 10V, positive-QTOF | splash10-0udi-0000090000-0a3807d0b0e0fcf40e23 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QqQ 12V, positive-QTOF | splash10-0udi-0000190000-c531fb31efc607bca539 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QqQ 14V, positive-QTOF | splash10-0udi-0000290000-9dcfda517e5c18de5c13 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QqQ 16V, positive-QTOF | splash10-0w29-0100590000-8b0595fe54a9ba02ae84 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QqQ 18V, positive-QTOF | splash10-0w29-0531890000-cf871a68617fa4921636 | 2020-07-22 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - beta-Cryptoxanthin QqQ 20V, positive-QTOF | splash10-0ik9-0961640000-22863b9e3dbec1d44800 | 2020-07-22 | HMDB team, MONA | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - beta-Cryptoxanthin 10V, Positive-QTOF | splash10-0f79-0423290000-bf7a8e40a11eff7bfe3c | 2017-06-28 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - beta-Cryptoxanthin 20V, Positive-QTOF | splash10-0002-0649100000-9c3f50cab7f2d02e22fd | 2017-06-28 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - beta-Cryptoxanthin 40V, Positive-QTOF | splash10-002k-0569000000-8a2e2a50f957c26b3ab1 | 2017-06-28 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - beta-Cryptoxanthin 10V, Negative-QTOF | splash10-0udi-0000090000-d34ae69e503c3f381911 | 2017-06-28 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - beta-Cryptoxanthin 20V, Negative-QTOF | splash10-0udi-0000090000-2fe3377fd40bc851dfc4 | 2017-06-28 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - beta-Cryptoxanthin 40V, Negative-QTOF | splash10-000i-0546190000-d1d53215d44121d13684 | 2017-06-28 | Wishart Lab | View Spectrum |
|
---|
General References | - Wingerath T, Stahl W, Sies H: beta-Cryptoxanthin selectively increases in human chylomicrons upon ingestion of tangerine concentrate rich in beta-cryptoxanthin esters. Arch Biochem Biophys. 1995 Dec 20;324(2):385-90. [PubMed:8554331 ]
- Irwig MS, El-Sohemy A, Baylin A, Rifai N, Campos H: Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. J Nutr. 2002 Oct;132(10):3161-7. [PubMed:12368412 ]
- Pattison DJ, Symmons DP, Lunt M, Welch A, Bingham SA, Day NE, Silman AJ: Dietary beta-cryptoxanthin and inflammatory polyarthritis: results from a population-based prospective study. Am J Clin Nutr. 2005 Aug;82(2):451-5. [PubMed:16087992 ]
- Yuan JM, Ross RK, Chu XD, Gao YT, Yu MC: Prediagnostic levels of serum beta-cryptoxanthin and retinol predict smoking-related lung cancer risk in Shanghai, China. Cancer Epidemiol Biomarkers Prev. 2001 Jul;10(7):767-73. [PubMed:11440962 ]
- Child JA: Haematology reporting. Nurs Times. 1975 Jul 3;71(27):1045-8. [PubMed:1144092 ]
- Ruano-Ravina A, Barros-Dios JM, Figueiras A, Branas-Tato P: Correspondence re Yuan JM et al., Prediagnostic levels of serum beta-cryptoxanthin and retinol predict smoking-related lung cancer risk in Shanghai, China. 2001;10:767-73. Neuhoser ML et al., Fruits and vegetables are associated with lower lung cancer risk only in the placebo arm of the beta-carotene and retinol efficacy trial (CARET). 2002;12:350-8. Satia-Abouta J et al., Associations of micronutrients with colon cancer risk in African Americans and whites: results from the North Carolina Colon Cancer Study. 2003;12:747-54. Cancer Epidemiol Biomarkers Prev. 2004 Apr;13(4):679-80; author reply 680. [PubMed:15066939 ]
- Lian F, Hu KQ, Russell RM, Wang XD: Beta-cryptoxanthin suppresses the growth of immortalized human bronchial epithelial cells and non-small-cell lung cancer cells and up-regulates retinoic acid receptor beta expression. Int J Cancer. 2006 Nov 1;119(9):2084-9. [PubMed:16841329 ]
- Uchiyama S, Sumida T, Yamaguchi M: Oral administration of beta-cryptoxanthin induces anabolic effects on bone components in the femoral tissues of rats in vivo. Biol Pharm Bull. 2004 Feb;27(2):232-5. [PubMed:14758041 ]
- Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
- Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
- Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
- Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
- (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
- Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.
|
---|