Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2012-09-11 18:37:02 UTC
Update Date2022-03-07 02:53:52 UTC
HMDB IDHMDB0033844
Secondary Accession Numbers
  • HMDB0240576
  • HMDB33844
Metabolite Identification
Common Namebeta-Cryptoxanthin
Descriptionbeta-Cryptoxanthin has been isolated from abalone, fish eggs, and many higher plants. beta-Cryptoxanthin is a major source of vitamin A, often second only to beta-carotene, and is present in fruits such as oranges, tangerines, and papayas (PMID: 8554331 ). Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Papaya intake was the best food predictor of plasma beta-cryptoxanthin concentrations. Subjects that frequently consumed (i.e. greater or equal to 3 times/day) tropical fruits with at least 50 micro g/100 g beta-cryptoxanthin (e.g. papaya, tangerine, orange, watermelon) had twofold the plasma beta-cryptoxanthin concentrations of those with intakes of less than 4 times/week (PMID: 12368412 ). A modest increase in beta-cryptoxanthin intake, equivalent to one glass of freshly squeezed orange juice per day, is associated with a reduced risk of developing inflammatory disorders such as rheumatoid arthritis (PMID: 16087992 ). Higher prediagnostic serum levels of total carotenoids and beta-cryptoxanthin were associated with lower smoking-related lung cancer risk in middle-aged and older men in Shanghai, China (PMID: 11440962 ). Consistent with inhibition of the lung cancer cell growth, beta-cryptoxanthin induced the mRNA levels of retinoic acid receptor beta (RAR-beta) in BEAS-2B cells, although this effect was less pronounced in A549 cells. Furthermore, beta-cryptoxanthin transactivated the RAR-mediated transcription activity of the retinoic acid response element. These findings suggest a mechanism of anti-proliferative action of beta-cryptoxanthin and indicate that beta-cryptoxanthin may be a promising chemopreventive agent against lung cancer (PMID: 16841329 ). Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum. In a pure form, cryptoxanthin is a red crystalline solid with a metallic lustre. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide. In the human body, cryptoxanthin is converted into vitamin A (retinol) and is therefore considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA. Structurally, cryptoxanthin is closely related to beta-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls.
Structure
Thumb
Synonyms
Chemical FormulaC40H56O
Average Molecular Weight552.887
Monoisotopic Molecular Weight552.433116423
IUPAC Name(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol
Traditional Namecryptoxanthin
CAS Registry Number472-70-8
SMILES
C\C(\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C1=C(C)C[C@@H](O)CC1(C)C
InChI Identifier
InChI=1S/C40H56O/c1-30(18-13-20-32(3)23-25-37-34(5)22-15-27-39(37,7)8)16-11-12-17-31(2)19-14-21-33(4)24-26-38-35(6)28-36(41)29-40(38,9)10/h11-14,16-21,23-26,36,41H,15,22,27-29H2,1-10H3/b12-11+,18-13+,19-14+,25-23+,26-24+,30-16+,31-17+,32-20+,33-21+/t36-/m1/s1
InChI KeyDMASLKHVQRHNES-FKKUPVFPSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTetraterpenoids
Direct ParentXanthophylls
Alternative Parents
Substituents
  • Xanthophyll
  • Secondary alcohol
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Alcohol
  • Aliphatic homomonocyclic compound
Molecular FrameworkAliphatic homomonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
DispositionNot Available
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point172 - 173 °CNot Available
Boiling Point682.90 °C. @ 760.00 mm Hg (est)The Good Scents Company Information System
Water Solubility1.9e-11 mg/L @ 25 °C (est)The Good Scents Company Information System
LogP13.670 (est)The Good Scents Company Information System
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Breast Milk
  • Feces
Tissue LocationsNot Available
Pathways
Normal Concentrations
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.103 +/- 0.110 uMAdult (>18 years old)Not Specified
Obese
details
BloodDetected and Quantified0.135 +/- 0.160 uMAdult (>18 years old)Not Specified
Overweight
details
BloodDetected and Quantified0.420 +/- 0.330 uMAdult (>18 years old)BothType I diabetes details
BloodDetected and Quantified0.100 +/- 0.0500 uMChildren (1 - 13 years old)Not SpecifiedObese details
BloodDetected and Quantified0.180 +/- 0.110 uMChildren (1 - 13 years old)Not SpecifiedOverweight details
Associated Disorders and Diseases
Disease References
Obesity
  1. Vioque J, Weinbrenner T, Asensio L, Castello A, Young IS, Fletcher A: Plasma concentrations of carotenoids and vitamin C are better correlated with dietary intake in normal weight than overweight and obese elderly subjects. Br J Nutr. 2007 May;97(5):977-86. [PubMed:17408529 ]
  2. Burrows TL, Warren JM, Colyvas K, Garg ML, Collins CE: Validation of overweight children's fruit and vegetable intake using plasma carotenoids. Obesity (Silver Spring). 2009 Jan;17(1):162-8. doi: 10.1038/oby.2008.495. Epub 2008 Nov 6. [PubMed:18997681 ]
Diabetes mellitus type 1
  1. Granado-Lorencio F, Olmedilla-Alonso B, Blanco-Navarro I, Botella-Romero F, Simal-Anton A: Assessment of carotenoid status and the relation to glycaemic control in type I diabetics: a follow-up study. Eur J Clin Nutr. 2006 Aug;60(8):1000-8. Epub 2006 Feb 1. [PubMed:16452910 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB097255
KNApSAcK IDC00000920
Chemspider ID4444647
KEGG Compound IDC08591
BioCyc IDCPD-7409
BiGG IDNot Available
Wikipedia LinkCryptoxanthin
METLIN IDNot Available
PubChem Compound5281235
PDB IDNot Available
ChEBI ID10362
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDrw1701401
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References