Hmdb loader
Show more...Show more...Show more...
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-11 19:52:57 UTC
Update Date2022-07-19 22:09:52 UTC
HMDB IDHMDB0034949
Secondary Accession Numbers
  • HMDB34949
Metabolite Identification
Common NameRebaudioside B
DescriptionRebaudioside B, also known as stevioside A4, belongs to the class of organic compounds known as steviol glycosides. These are prenol lipids containing a carbohydrate moiety glycosidically linked to a steviol (a diterpenoid based on a 13-Hydroxykaur-16-en-18-oic acid) moiety. Steviol glycosides are the chemical compounds responsible for the sweet taste of the leaves of the South American plant Stevia rebaudiana (Asteraceae), which is a member of the sunflower family native to Paraguay and Brazil.  Steviol glycosides are the main ingredients (or precursors) of many sweeteners marketed under the generic name stevia and several other trade names. Rebaudioside B, is found in minute quantities in stevia extracts, however, it is suspected that rebaudioside B is a byproduct of the isolation technique (doi:10.4141/P97-114). Rebaudioside B binds to the T1R2 and T1R3 (sweet) receptors as well as the T2R4 and T2R14 (bitter) receptors (PMID: 24705770 ).  Rebaudioside B is not an endogenously occurring human metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Rebaudioside B is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults or impacts from environmental, dietary and occupational sources.
Structure
Thumb
Synonyms
ValueSource
Stevioside a4HMDB
13-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylateGenerator
Chemical FormulaC38H60O18
Average Molecular Weight804.8722
Monoisotopic Molecular Weight804.377965116
IUPAC Name13-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid
Traditional Name13-{[5-hydroxy-6-(hydroxymethyl)-3,4-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid
CAS Registry Number58543-17-2
SMILES
CC12CCCC(C)(C1CCC13CC(=C)C(C1)(CCC23)OC1OC(CO)C(O)C(OC2OC(CO)C(O)C(O)C2O)C1OC1OC(CO)C(O)C(O)C1O)C(O)=O
InChI Identifier
InChI=1S/C38H60O18/c1-16-11-37-9-5-20-35(2,7-4-8-36(20,3)34(49)50)21(37)6-10-38(16,15-37)56-33-30(55-32-28(48)26(46)23(43)18(13-40)52-32)29(24(44)19(14-41)53-33)54-31-27(47)25(45)22(42)17(12-39)51-31/h17-33,39-48H,1,4-15H2,2-3H3,(H,49,50)
InChI KeyDRSKVOAJKLUMCL-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as steviol glycosides. These are prenol lipids containing a carbohydrate moiety glycosidically linked to a steviol (a diterpenoid based on a 13-Hydroxykaur-16-en-18-oic acid) moiety.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassPrenol lipids
Sub ClassTerpene glycosides
Direct ParentSteviol glycosides
Alternative Parents
Substituents
  • Steviol glycoside
  • Oligosaccharide
  • Diterpenoid
  • Kaurane diterpenoid
  • Fatty acyl glycoside
  • Glycosyl compound
  • O-glycosyl compound
  • Fatty acyl
  • Oxane
  • Secondary alcohol
  • Oxacycle
  • Carboxylic acid derivative
  • Carboxylic acid
  • Acetal
  • Organoheterocyclic compound
  • Monocarboxylic acid or derivatives
  • Polyol
  • Hydrocarbon derivative
  • Alcohol
  • Organic oxide
  • Organic oxygen compound
  • Organooxygen compound
  • Primary alcohol
  • Carbonyl group
  • Aliphatic heteropolycyclic compound
Molecular FrameworkAliphatic heteropolycyclic compounds
External DescriptorsNot Available
Ontology
Physiological effectNot Available
Disposition
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point193 - 195 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB013542
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound13370036
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDrw1846551
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Risso D, Morini G, Pagani L, Quagliariello A, Giuliani C, De Fanti S, Sazzini M, Luiselli D, Tofanelli S: Genetic signature of differential sensitivity to stevioside in the Italian population. Genes Nutr. 2014 May;9(3):401. doi: 10.1007/s12263-014-0401-y. Epub 2014 Apr 6. [PubMed:24705770 ]
  6. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .
  7. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Enzymes

General function:
Involved in G-protein coupled receptor activity
Specific function:
Gustducin-coupled receptor for denatonium and N(6)- propyl-2-thiouracil implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5. In airway epithelial cells, binding of denatonium increases the intracellular calcium ion concentration and stimulates ciliary beat frequency
Gene Name:
TAS2R4
Uniprot ID:
Q9NYW5
Molecular weight:
33840.2
General function:
Involved in G-protein coupled receptor activity
Specific function:
Putative taste receptor. TAS1R1/TAS1R3 responds to the umami taste stimulus (the taste of monosodium glutamate). TAS1R2/TAS1R3 recognizes diverse natural and synthetic sweeteners. TAS1R3 is essential for the recognition and response to the disaccharide trehalose. Sequence differences within and between species can significantly influence the selectivity and specificity of taste responses
Gene Name:
TAS1R3
Uniprot ID:
Q7RTX0
Molecular weight:
93385.2
General function:
Involved in G-protein coupled receptor activity
Specific function:
Putative taste receptor. TAS1R2/TAS1R3 recognizes diverse natural and synthetic sweeteners
Gene Name:
TAS1R2
Uniprot ID:
Q8TE23
Molecular weight:
95182.5
General function:
Not Available
Specific function:
Receptor that may play a role in the perception of bitterness and is gustducin-linked. May play a role in sensing the chemical composition of the gastrointestinal content. The activity of this receptor may stimulate alpha gustducin, mediate PLC-beta-2 activation and lead to the gating of TRPM5
Gene Name:
TAS2R14
Uniprot ID:
Q9NYV8
Molecular weight:
36.0