| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Detected and Quantified |
|---|
| Creation Date | 2006-02-28 10:47:30 UTC |
|---|
| Update Date | 2023-02-21 17:15:55 UTC |
|---|
| HMDB ID | HMDB0001886 |
|---|
| Secondary Accession Numbers | |
|---|
| Metabolite Identification |
|---|
| Common Name | 3-Methylxanthine |
|---|
| Description | 3-methyl-9H-xanthine is a 3-methylxanthine tautomer where the imidazole proton is located at the 9-position. It has a role as a metabolite. It is a tautomer of a 3-methyl-7H-xanthine. 3-Methylxanthine, also known as 3 MX or purine analog, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. |
|---|
| Structure | InChI=1S/C6H6N4O2/c1-10-4-3(7-2-8-4)5(11)9-6(10)12/h2H,1H3,(H,7,8)(H,9,11,12) |
|---|
| Synonyms | | Value | Source |
|---|
| 2-oxo-3-Methylhypoxanthine | ChEBI | | 3 MX | ChEBI | | 3,9-Dihydro-3-methyl-1H-purine-2,6-dione | ChEBI | | 3-Methyl-3,7(9)-dihydro-purine-2,6-dione | ChEBI | | 3-Methyl-3,9-dihydro-2H,6H-purine-2,6-dione | ChEBI | | 3-Methylxanthine, methyl-(13)C-labeled | MeSH | | 3-Methylxanthine, monopotassium salt | MeSH | | 3-Methylxanthine, monosodium salt | MeSH | | 2,6-Dihydroxy-3-methylpurine | HMDB | | 3-Methyl xanthine | HMDB | | 3-Methyl-3,9-dihydro-purine-2,6-dione | HMDB | | Purine analog | HMDB | | 3-Methylxanthine | ChEBI |
|
|---|
| Chemical Formula | C6H6N4O2 |
|---|
| Average Molecular Weight | 166.1374 |
|---|
| Monoisotopic Molecular Weight | 166.049075456 |
|---|
| IUPAC Name | 3-methyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione |
|---|
| Traditional Name | 3-methylxanthine |
|---|
| CAS Registry Number | 1076-22-8 |
|---|
| SMILES | CN1C2=C(NC=N2)C(=O)NC1=O |
|---|
| InChI Identifier | InChI=1S/C6H6N4O2/c1-10-4-3(7-2-8-4)5(11)9-6(10)12/h2H,1H3,(H,7,8)(H,9,11,12) |
|---|
| InChI Key | GMSNIKWWOQHZGF-UHFFFAOYSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organoheterocyclic compounds |
|---|
| Class | Imidazopyrimidines |
|---|
| Sub Class | Purines and purine derivatives |
|---|
| Direct Parent | Xanthines |
|---|
| Alternative Parents | |
|---|
| Substituents | - Xanthine
- Purinone
- Alkaloid or derivatives
- Pyrimidone
- Hydroxypyrimidine
- Pyrimidine
- Heteroaromatic compound
- Imidazole
- Azole
- Azacycle
- Hydrocarbon derivative
- Organopnictogen compound
- Organic oxygen compound
- Organic nitrogen compound
- Organooxygen compound
- Organonitrogen compound
- Organic oxide
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | Not Available |
|---|
| Disposition | |
|---|
| Process | |
|---|
| Role | |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | > 300 °C | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | 8394 mg/L @ 25 °C (est) | The Good Scents Company Information System | | LogP | -0.50 | GASPARI,F & BONATI,M (1987) |
|
|---|
| Experimental Chromatographic Properties | Experimental Collision Cross Sections |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 2.05 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 9.0928 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 2.54 minutes | 32390414 | | AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid | 64.2 seconds | 40023050 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 578.7 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 318.9 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 70.2 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 203.7 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 52.7 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 274.9 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 260.9 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 127.7 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 598.1 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 250.3 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 704.6 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 202.8 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 209.6 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 654.5 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 225.1 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 197.4 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatizedDerivatized| Derivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
|---|
| 3-Methylxanthine,1TMS,isomer #1 | CN1C(=O)[NH]C(=O)C2=C1N=CN2[Si](C)(C)C | 1962.7 | Semi standard non polar | 33892256 | | 3-Methylxanthine,1TMS,isomer #1 | CN1C(=O)[NH]C(=O)C2=C1N=CN2[Si](C)(C)C | 2067.7 | Standard non polar | 33892256 | | 3-Methylxanthine,1TMS,isomer #1 | CN1C(=O)[NH]C(=O)C2=C1N=CN2[Si](C)(C)C | 2676.8 | Standard polar | 33892256 | | 3-Methylxanthine,1TMS,isomer #2 | CN1C(=O)N([Si](C)(C)C)C(=O)C2=C1N=C[NH]2 | 1922.3 | Semi standard non polar | 33892256 | | 3-Methylxanthine,1TMS,isomer #2 | CN1C(=O)N([Si](C)(C)C)C(=O)C2=C1N=C[NH]2 | 2078.2 | Standard non polar | 33892256 | | 3-Methylxanthine,1TMS,isomer #2 | CN1C(=O)N([Si](C)(C)C)C(=O)C2=C1N=C[NH]2 | 2827.5 | Standard polar | 33892256 | | 3-Methylxanthine,2TMS,isomer #1 | CN1C(=O)N([Si](C)(C)C)C(=O)C2=C1N=CN2[Si](C)(C)C | 1969.2 | Semi standard non polar | 33892256 | | 3-Methylxanthine,2TMS,isomer #1 | CN1C(=O)N([Si](C)(C)C)C(=O)C2=C1N=CN2[Si](C)(C)C | 2089.9 | Standard non polar | 33892256 | | 3-Methylxanthine,2TMS,isomer #1 | CN1C(=O)N([Si](C)(C)C)C(=O)C2=C1N=CN2[Si](C)(C)C | 2372.5 | Standard polar | 33892256 | | 3-Methylxanthine,1TBDMS,isomer #1 | CN1C(=O)[NH]C(=O)C2=C1N=CN2[Si](C)(C)C(C)(C)C | 2183.2 | Semi standard non polar | 33892256 | | 3-Methylxanthine,1TBDMS,isomer #1 | CN1C(=O)[NH]C(=O)C2=C1N=CN2[Si](C)(C)C(C)(C)C | 2253.4 | Standard non polar | 33892256 | | 3-Methylxanthine,1TBDMS,isomer #1 | CN1C(=O)[NH]C(=O)C2=C1N=CN2[Si](C)(C)C(C)(C)C | 2716.8 | Standard polar | 33892256 | | 3-Methylxanthine,1TBDMS,isomer #2 | CN1C(=O)N([Si](C)(C)C(C)(C)C)C(=O)C2=C1N=C[NH]2 | 2127.9 | Semi standard non polar | 33892256 | | 3-Methylxanthine,1TBDMS,isomer #2 | CN1C(=O)N([Si](C)(C)C(C)(C)C)C(=O)C2=C1N=C[NH]2 | 2254.9 | Standard non polar | 33892256 | | 3-Methylxanthine,1TBDMS,isomer #2 | CN1C(=O)N([Si](C)(C)C(C)(C)C)C(=O)C2=C1N=C[NH]2 | 2807.4 | Standard polar | 33892256 | | 3-Methylxanthine,2TBDMS,isomer #1 | CN1C(=O)N([Si](C)(C)C(C)(C)C)C(=O)C2=C1N=CN2[Si](C)(C)C(C)(C)C | 2357.5 | Semi standard non polar | 33892256 | | 3-Methylxanthine,2TBDMS,isomer #1 | CN1C(=O)N([Si](C)(C)C(C)(C)C)C(=O)C2=C1N=CN2[Si](C)(C)C(C)(C)C | 2508.0 | Standard non polar | 33892256 | | 3-Methylxanthine,2TBDMS,isomer #1 | CN1C(=O)N([Si](C)(C)C(C)(C)C)C(=O)C2=C1N=CN2[Si](C)(C)C(C)(C)C | 2488.2 | Standard polar | 33892256 |
|
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Predicted GC-MS | Predicted GC-MS Spectrum - 3-Methylxanthine GC-MS (Non-derivatized) - 70eV, Positive | splash10-01bj-5900000000-e52c5f846a0fa5fe07ef | 2017-09-01 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - 3-Methylxanthine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine Quattro_QQQ 10V, Positive-QTOF (Annotated) | splash10-004i-1900000000-ddc5f6a902d7bbd1fb47 | 2012-07-24 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine Quattro_QQQ 25V, Positive-QTOF (Annotated) | splash10-01b9-1900000000-c8fefaf49ff542098257 | 2012-07-24 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine Quattro_QQQ 40V, Positive-QTOF (Annotated) | splash10-0006-9100000000-e21e77b88dfb9995efdd | 2012-07-24 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Positive-QTOF | splash10-014i-1900000000-e5e3ab4240496c2d1174 | 2012-08-31 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negative-QTOF | splash10-014i-0900000000-18cbc6f55db32d03e9fb | 2012-08-31 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine LC-ESI-QTOF , negative-QTOF | splash10-014i-0900000000-18cbc6f55db32d03e9fb | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine LC-ESI-QTOF , positive-QTOF | splash10-014i-1900000000-e5e3ab4240496c2d1174 | 2017-09-14 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine 40V, Positive-QTOF | splash10-00kf-9000000000-2798f94f3fae6b71fd24 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine 10V, Negative-QTOF | splash10-014i-1900000000-e669f6d72e0c6f52426d | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine 20V, Positive-QTOF | splash10-00xr-4900000000-c551a8b2a18860020666 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine 10V, Positive-QTOF | splash10-014i-0900000000-368b9799295bcad108a6 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine 20V, Negative-QTOF | splash10-00xu-5900000000-37aae7a39dc6fe95fe73 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine 30V, Negative-QTOF | splash10-00r6-9300000000-8446d34de983224e406e | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3-Methylxanthine 40V, Negative-QTOF | splash10-014l-9000000000-e59666cd3257a8b919c2 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 10V, Positive-QTOF | splash10-014i-0900000000-c30c1961ecbdf271a24e | 2015-04-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 20V, Positive-QTOF | splash10-014i-1900000000-ab9e73c4012de4c80f38 | 2015-04-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 40V, Positive-QTOF | splash10-014i-9100000000-8c4dac19316eed77c6dc | 2015-04-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 10V, Negative-QTOF | splash10-014i-0900000000-ef5279264b1ae3a9f2c0 | 2015-04-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 20V, Negative-QTOF | splash10-01bc-5900000000-ae2f574c67e566bead1c | 2015-04-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 40V, Negative-QTOF | splash10-0006-9100000000-1a0783c7fb8ec28a786f | 2015-04-25 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 10V, Positive-QTOF | splash10-014i-0900000000-d3632c2d43dc7c3c5d2b | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 20V, Positive-QTOF | splash10-014i-4900000000-c71fccea6e32b15af7fa | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 40V, Positive-QTOF | splash10-00kf-9200000000-9a5e9e09ea4184c6ef37 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 10V, Negative-QTOF | splash10-014i-0900000000-d5b4655ae02ddbadcfc0 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3-Methylxanthine 20V, Negative-QTOF | splash10-014i-4900000000-21e34d3a8183ecf2d209 | 2021-09-24 | Wishart Lab | View Spectrum |
NMR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | | Experimental 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | 2021-10-10 | Wishart Lab | View Spectrum | | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, 5%_DMSO, experimental) | 2012-12-05 | Wishart Lab | View Spectrum |
IR Spectra| Spectrum Type | Description | Deposition Date | Source | View |
|---|
| Predicted IR Spectrum | IR Ion Spectrum (Quadrupole Ion Trap, ESI+, Adduct: [M+Na]+) | 2022-02-11 | FELIX lab | View Spectrum | | Predicted IR Spectrum | IR Ion Spectrum (Quadrupole Ion Trap, ESI+, Adduct: [M+H]+) | 2022-02-11 | FELIX lab | View Spectrum | | Predicted IR Spectrum | IR Ion Spectrum (Quadrupole Ion Trap, ESI-, Adduct: [M-H]-) | 2022-02-11 | FELIX lab | View Spectrum | | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M-H]-) | 2023-02-03 | FELIX lab | View Spectrum | | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+) | 2023-02-03 | FELIX lab | View Spectrum | | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+) | 2023-02-03 | FELIX lab | View Spectrum |
|
|---|
| Disease References | | Colorectal cancer |
|---|
- Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
| | Asthma |
|---|
- Zydron M, Baranowski J, Baranowska I: Separation, pre-concentration, and HPLC analysis of methylxanthines in urine samples. J Sep Sci. 2004 Oct;27(14):1166-72. [PubMed:15537072 ]
| | Autosomal dominant polycystic kidney disease |
|---|
- Gronwald W, Klein MS, Zeltner R, Schulze BD, Reinhold SW, Deutschmann M, Immervoll AK, Boger CA, Banas B, Eckardt KU, Oefner PJ: Detection of autosomal dominant polycystic kidney disease by NMR spectroscopic fingerprinting of urine. Kidney Int. 2011 Jun;79(11):1244-53. doi: 10.1038/ki.2011.30. Epub 2011 Mar 9. [PubMed:21389975 ]
| | Eosinophilic esophagitis |
|---|
- Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
|
|
|---|
| General References | - Orlando R, Padrini R, Perazzi M, De Martin S, Piccoli P, Palatini P: Liver dysfunction markedly decreases the inhibition of cytochrome P450 1A2-mediated theophylline metabolism by fluvoxamine. Clin Pharmacol Ther. 2006 May;79(5):489-99. [PubMed:16678550 ]
- Knoppert DC, Spino M, Beck R, Thiessen JJ, MacLeod SM: Cystic fibrosis: enhanced theophylline metabolism may be linked to the disease. Clin Pharmacol Ther. 1988 Sep;44(3):254-64. [PubMed:3046811 ]
- Miller M, Opheim KE, Raisys VA, Motulsky AG: Theophylline metabolism: variation and genetics. Clin Pharmacol Ther. 1984 Feb;35(2):170-82. [PubMed:6362955 ]
- Desiraju RK, Sugita ET, Mayock RL: Determination of theophylline and its metabolites by liquid chromatography. J Chromatogr Sci. 1977 Dec;15(12):563-8. [PubMed:591601 ]
- Tarka SM Jr, Arnaud MJ, Dvorchik BH, Vesell ES: Theobromine kinetics and metabolic disposition. Clin Pharmacol Ther. 1983 Oct;34(4):546-55. [PubMed:6617078 ]
- Tateishi T, Asoh M, Yamaguchi A, Yoda T, Okano YJ, Koitabashi Y, Kobayashi S: Developmental changes in urinary elimination of theophylline and its metabolites in pediatric patients. Pediatr Res. 1999 Jan;45(1):66-70. [PubMed:9890610 ]
- Geraets L, Moonen HJ, Wouters EF, Bast A, Hageman GJ: Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations. Biochem Pharmacol. 2006 Sep 28;72(7):902-10. Epub 2006 Jul 25. [PubMed:16870158 ]
|
|---|