Hmdb loader
Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected but not Quantified
Creation Date2006-03-08 13:09:08 UTC
Update Date2022-09-22 18:34:16 UTC
HMDB IDHMDB0001894
Secondary Accession Numbers
  • HMDB01894
Metabolite Identification
Common NameAspartame
DescriptionAspartame is the name for an artificial, non-carbohydrate sweetener, aspartyl-phenylalanine-1-methyl ester; i.e., the methyl ester of the dipeptide of the amino acids aspartic acid and phenylalanine. It is marketed under a number of trademark names, such as Equal, and Canderel, and is an ingredient of approximately 6,000 consumer foods and beverages sold worldwide. It is commonly used in diet soft drinks, and is often provided as a table condiment. It is also used in some brands of chewable vitamin supplements. In the European Union, it is also known under the E number (additive code) E951. Aspartame is also one of the sugar substitutes used by diabetics. Upon ingestion, aspartame breaks down into several constituent chemicals, including the naturally-occurring essential amino acid phenylalanine which is a health hazard to the few people born with phenylketonuria, a congenital inability to process phenylalanine. Aspartic acid is an amino acid commonly found in foods. Approximately 40% of aspartame (by mass) is broken down into aspartic acid. Because aspartame is metabolized and absorbed very quickly (unlike aspartic acid-containing proteins in foods), it is known that aspartame could spike blood plasma levels of aspartate. Aspartic acid is in a class of chemicals known as excitotoxins. Abnormally high levels of excitotoxins have been shown in hundreds of animals studies to cause damage to areas of the brain unprotected by the blood-brain barrier and a variety of chronic diseases arising out of this neurotoxicity.
Structure
Thumb
Synonyms
Chemical FormulaC14H18N2O5
Average Molecular Weight294.3031
Monoisotopic Molecular Weight294.121571696
IUPAC Name(3S)-3-amino-3-{[(2S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]carbamoyl}propanoic acid
Traditional Nameaspartame
CAS Registry Number22839-47-0
SMILES
COC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@@H](N)CC(O)=O
InChI Identifier
InChI=1S/C14H18N2O5/c1-21-14(20)11(7-9-5-3-2-4-6-9)16-13(19)10(15)8-12(17)18/h2-6,10-11H,7-8,15H2,1H3,(H,16,19)(H,17,18)/t10-,11-/m0/s1
InChI KeyIAOZJIPTCAWIRG-QWRGUYRKSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as peptides. Peptides are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentPeptides
Alternative Parents
Substituents
  • Alpha peptide
  • Phenylalanine or derivatives
  • Alpha-amino acid ester
  • N-acyl-alpha amino acid or derivatives
  • Beta amino acid or derivatives
  • Alpha-amino acid or derivatives
  • Amphetamine or derivatives
  • Fatty acid ester
  • Monocyclic benzene moiety
  • Fatty acyl
  • Benzenoid
  • Dicarboxylic acid or derivatives
  • Methyl ester
  • Amino acid or derivatives
  • Amino acid
  • Carboxylic acid ester
  • Organic 1,3-dipolar compound
  • Carboximidic acid
  • Carboximidic acid derivative
  • Propargyl-type 1,3-dipolar organic compound
  • Carboxylic acid
  • Organopnictogen compound
  • Amine
  • Organic oxygen compound
  • Carbonyl group
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Primary amine
  • Organooxygen compound
  • Primary aliphatic amine
  • Organonitrogen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
DispositionNot Available
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point246.5 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-MetCCS_train_neg166.71330932474
[M+H]+MetCCS_train_pos169.63630932474
[M-H]-Not Available166.713http://allccs.zhulab.cn/database/detail?ID=AllCCS00000047
[M+H]+Not Available169.982http://allccs.zhulab.cn/database/detail?ID=AllCCS00000047
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular LocationsNot Available
Biospecimen Locations
  • Blood
  • Saliva
  • Urine
Tissue Locations
  • Brain
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
SalivaDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Not SpecifiedNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
UrineDetected but not QuantifiedNot QuantifiedNot SpecifiedNot SpecifiedCancer patients undergoing total body irradiation details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDDB00168
Phenol Explorer Compound IDNot Available
FooDB IDFDB000569
KNApSAcK IDNot Available
Chemspider ID118630
KEGG Compound IDC11045
BioCyc IDCPD-5583
BiGG IDNot Available
Wikipedia LinkAspartame
METLIN ID6377
PubChem Compound134601
PDB IDNot Available
ChEBI ID2877
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceFuganti, Claudio; Grasselli, Piero; Malpezzi, Luciana; Casati, Paolo. Synthesis of aspartame via asymmetric hydrogenation of N-protected (Z)-N-a-L-aspartyl-D-phenylalanine methyl ester. Journal of Organic Chemistry (1986), 51(7), 1126-8.
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in ion channel activity
Specific function:
Receptor-activated non-selective calcium permeant cation channel involved in detection of noxious chemical and thermal stimuli. Seems to mediate proton influx and may be involved in intracellular acidosis in nociceptive neurons. May be involved in mediation of inflammatory pain and hyperalgesia. Sensitized by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases, which involves PKC isozymes and PCL
Gene Name:
TRPV1
Uniprot ID:
Q8NER1
Molecular weight:
94955.3
References
  1. Riera CE, Vogel H, Simon SA, le Coutre J: Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(2):R626-34. Epub 2007 Jun 13. [PubMed:17567713 ]
General function:
Involved in G-protein coupled receptor activity
Specific function:
Putative taste receptor. TAS1R1/TAS1R3 responds to the umami taste stimulus (the taste of monosodium glutamate). TAS1R2/TAS1R3 recognizes diverse natural and synthetic sweeteners. TAS1R3 is essential for the recognition and response to the disaccharide trehalose. Sequence differences within and between species can significantly influence the selectivity and specificity of taste responses
Gene Name:
TAS1R3
Uniprot ID:
Q7RTX0
Molecular weight:
93385.2
General function:
Involved in G-protein coupled receptor activity
Specific function:
Putative taste receptor. TAS1R2/TAS1R3 recognizes diverse natural and synthetic sweeteners
Gene Name:
TAS1R2
Uniprot ID:
Q8TE23
Molecular weight:
95182.5
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
  3. Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X: Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci U S A. 2004 Sep 28;101(39):14258-63. Epub 2004 Sep 7. [PubMed:15353592 ]
  4. Cui M, Jiang P, Maillet E, Max M, Margolskee RF, Osman R: The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des. 2006;12(35):4591-600. [PubMed:17168764 ]

Transporters

General function:
Involved in transporter activity
Specific function:
Mediates saturable uptake of estrone sulfate, dehydroepiandrosterone sulfate and related compounds
Gene Name:
SLC22A11
Uniprot ID:
Q9NSA0
Molecular weight:
59970.9
References
  1. Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, Cha SH, Sekine T, Sakthisekaran D, Endou H: Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002 Jun 12;1590(1-3):64-75. [PubMed:12063169 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Involved in the renal elimination of endogenous and exogenous organic anions. Functions as organic anion exchanger when the uptake of one molecule of organic anion is coupled with an efflux of one molecule of endogenous dicarboxylic acid (glutarate, ketoglutarate, etc). Mediates the sodium-independent uptake of 2,3-dimercapto-1-propanesulfonic acid (DMPS). Mediates the sodium-independent uptake of p- aminohippurate (PAH), ochratoxin (OTA), acyclovir (ACV), 3'-azido- 3-'deoxythymidine (AZT), cimetidine (CMD), 2,4-dichloro- phenoxyacetate (2,4-D), hippurate (HA), indoleacetate (IA), indoxyl sulfate (IS) and 3-carboxy-4-methyl-5-propyl-2- furanpropionate (CMPF), cidofovir, adefovir, 9-(2- phosphonylmethoxyethyl) guanine (PMEG), 9-(2- phosphonylmethoxyethyl) diaminopurine (PMEDAP) and edaravone sulfate. PAH uptake is inhibited by p- chloromercuribenzenesulphonate (PCMBS), diethyl pyrocarbonate (DEPC), sulindac, diclofenac, carprofen, glutarate and okadaic acid. PAH uptake is inhibited by benzothiazolylcysteine (BTC), S-chlorotrifluoroethylcysteine (CTFC), cysteine S-conjugates S-dichlorovinylcysteine (DCVC), furosemide, steviol, phorbol 12-myristate 13-acetate (PMA), calcium ionophore A23187, benzylpenicillin, furosemide, indomethacin, bumetamide, losartan, probenecid, phenol red, urate, and alpha-ketoglutarate
Gene Name:
SLC22A6
Uniprot ID:
Q4U2R8
Molecular weight:
61815.8
References
  1. Jung KY, Takeda M, Kim DK, Tojo A, Narikawa S, Yoo BS, Hosoyamada M, Cha SH, Sekine T, Endou H: Characterization of ochratoxin A transport by human organic anion transporters. Life Sci. 2001 Sep 21;69(18):2123-35. [PubMed:11669456 ]
  2. Tsuda M, Sekine T, Takeda M, Cha SH, Kanai Y, Kimura M, Endou H: Transport of ochratoxin A by renal multispecific organic anion transporter 1. J Pharmacol Exp Ther. 1999 Jun;289(3):1301-5. [PubMed:10336520 ]