You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected and Quantified
Creation Date2006-05-22 15:12:41 UTC
Update Date2020-04-22 23:31:18 UTC
Secondary Accession Numbers
  • HMDB03208
Metabolite Identification
Common NameThromboxane
DescriptionThromboxane is a member of the family of lipids known as eicosanoids. It is produced in platelets by thromboxane synthetase, which is produced from the endoperoxides by the cyclooxygenase (COX) enzyme from arachidonic acid. -- Wikipedia; Thromboxane is a vasoconstrictor, potent hypertensive agent, and facilitates the clumping of platelets. It is in homeostatic balance in the circulatory system with prostacyclin, a related compound. The widely-used drug aspirin acts by inhibiting the ability of the COX enzyme to synthesize the precursors of thromboxane within platelets. -- WikipediaThromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.
Thromboxane a2HMDB
Chemical FormulaC20H40O
Average Molecular Weight296.531
Monoisotopic Molecular Weight296.307915902
IUPAC Name(2R,3S)-3-heptyl-2-octyloxane
Traditional Name(2R,3S)-3-heptyl-2-octyl-oxane
CAS Registry Number66719-58-2
InChI Identifier
Chemical Taxonomy
Description belongs to the class of organic compounds known as thromboxanes. These are eicosanoids structurally characterized by the presence of a 6-member ether containing ring.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassEicosanoids
Direct ParentThromboxanes
Alternative Parents
  • Thromboxane
  • Oxane
  • Oxacycle
  • Organoheterocyclic compound
  • Ether
  • Dialkyl ether
  • Organic oxygen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External DescriptorsNot Available

Route of exposure:


Biological location:


Naturally occurring process:


Biological role:

Physical Properties
Experimental Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
Water Solubility1.2e-05 g/LALOGPS
pKa (Strongest Basic)-4.1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area9.23 ŲChemAxon
Rotatable Bond Count13ChemAxon
Refractivity93.78 m³·mol⁻¹ChemAxon
Polarizability41.15 ųChemAxon
Number of Rings1ChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectrum TypeDescriptionSplash KeyView
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-0f9l-6890000000-3f997c71bb65094a1825Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0002-0090000000-64191400e8b8791d16fbSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0udj-2590000000-54b3b759c10bf3ea2f7fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-006x-9640000000-0e1bc8b51f24769887cbSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-0090000000-09bb02afbfa046dee93fSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0002-1190000000-895c8c2d04b2e1e0853bSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0ufu-2950000000-96efc7245fc678eba5aeSpectrum
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
  • Membrane (predicted from logP)
  • Endoplasmic reticulum
Biospecimen Locations
  • Cerebrospinal Fluid (CSF)
Tissue Locations
  • Fibroblasts
  • Kidney
  • Lung
  • Neuron
  • Placenta
  • Platelet
  • Skeletal Muscle
  • Smooth Muscle
  • Spleen
Normal Concentrations
Cerebrospinal Fluid (CSF)Detected and Quantified0.000126 +/- 0.00001755 uMNot SpecifiedNot SpecifiedNormal details
Abnormal Concentrations
Cerebrospinal Fluid (CSF)Detected and Quantified0.000591 +/- 0.000129 uMAdult (>18 years old)Not SpecifiedSpinal cord injuries (acute stage) details
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB023124
KNApSAcK IDNot Available
Chemspider ID102829
KEGG Compound IDC02198
BioCyc IDNot Available
BiGG ID39305
Wikipedia LinkThromboxane
PubChem Compound114873
PDB IDNot Available
ChEBI ID1221363
Food Biomarker OntologyNot Available
VMH IDNot Available
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Gurbel PA, Gattis WA, Fuzaylov SF, Gaulden L, Hasselblad V, Serebruany VL, O'Connor CM: Evaluation of platelets in heart failure: is platelet activity related to etiology, functional class, or clinical outcomes? Am Heart J. 2002 Jun;143(6):1068-75. [PubMed:12075265 ]
  2. Rocca B, Ciabattoni G, Tartaglione R, Cortelazzo S, Barbui T, Patrono C, Landolfi R: Increased thromboxane biosynthesis in essential thrombocythemia. Thromb Haemost. 1995 Nov;74(5):1225-30. [PubMed:8607099 ]
  3. Dong WG, Liu SP, Zhu HH, Luo HS, Yu JP: Abnormal function of platelets and role of angelica sinensis in patients with ulcerative colitis. World J Gastroenterol. 2004 Feb 15;10(4):606-9. [PubMed:14966927 ]
  4. van Genderen PJ, Prins FJ, Michiels JJ, Schror K: Thromboxane-dependent platelet activation in vivo precedes arterial thrombosis in thrombocythaemia: a rationale for the use of low-dose aspirin as an antithrombotic agent. Br J Haematol. 1999 Mar;104(3):438-41. [PubMed:10086775 ]
  5. FitzGerald GA, Oates JA, Hawiger J, Maas RL, Roberts LJ 2nd, Lawson JA, Brash AR: Endogenous biosynthesis of prostacyclin and thromboxane and platelet function during chronic administration of aspirin in man. J Clin Invest. 1983 Mar;71(3):676-88. [PubMed:6338043 ]
  6. Karamouzis M, Langberg H, Skovgaard D, Bulow J, Kjaer M, Saltin B: In situ microdialysis of intramuscular prostaglandin and thromboxane in contracting skeletal muscle in humans. Acta Physiol Scand. 2001 Jan;171(1):71-6. [PubMed:11350265 ]
  7. Wacker MJ, Tyburski JB, Ammar CP, Adams MC, Orr JA: Detection of thromboxane A(2) receptor mRNA in rabbit nodose ganglion neurons. Neurosci Lett. 2005 Sep 30;386(2):121-6. [PubMed:15992996 ]
  8. Pfister SL, Hughes MJ, Rosolowsky M, Campbell WB: Role of contaminating platelets in thromboxane synthesis in primary cultures of human umbilical vein endothelial cells. Prostaglandins Other Lipid Mediat. 2002 Sep;70(1-2):39-49. [PubMed:12428677 ]
  9. Hsu CY, Halushka PV, Hogan EL, Cox RD: Increased thromboxane level in experimental spinal cord injury. J Neurol Sci. 1986 Jul;74(2-3):289-96. [PubMed:3525758 ]
  10. Dogne JM, de Leval X, Delarge J, David JL, Masereel B: New trends in thromboxane and prostacyclin modulators. Curr Med Chem. 2000 Jun;7(6):609-28. [PubMed:10702629 ]
  11. Habib A, Vezza R, Creminon C, Maclouf J, FitzGerald GA: Rapid, agonist-dependent phosphorylation in vivo of human thromboxane receptor isoforms. Minimal involvement of protein kinase C. J Biol Chem. 1997 Mar 14;272(11):7191-200. [PubMed:9054415 ]
  12. Vericel E, Calzada C, Chapuy P, Lagarde M: The influence of low intake of n-3 fatty acids on platelets in elderly people. Atherosclerosis. 1999 Nov 1;147(1):187-92. [PubMed:10525140 ]
  13. Conti S, Desideri N, Passaghe S, Castagnoli MN, Cerletti C, Stein ML: Inhibition of thromboxane biosynthesis by 3-pyridinol carboxypentyl ethers substituted with a hydroxylated octyl chain. J Pharm Pharmacol. 1988 Feb;40(2):144-6. [PubMed:2897452 ]
  14. Ylikorkala O, Makila UM, Viinikka L: Amniotic fluid prostacyclin and thromboxane in normal, preeclamptic, and some other complicated pregnancies. Am J Obstet Gynecol. 1981 Nov 1;141(5):487-90. [PubMed:6895277 ]
  15. Stuart M, Wu J, Sunderji S, Ganley C: Effect of amniotic fluid on platelet thromboxane production. J Pediatr. 1987 Feb;110(2):289-92. [PubMed:3806304 ]
  16. Shimura S, Sasaki T, Ishihara H, Satoh M, Masuda T, Sasaki H, Takishima T: [Airway hyperresponsiveness and mucus secretion]. Nihon Kyobu Shikkan Gakkai Zasshi. 1990 Oct;28(10):1299-304. [PubMed:1703251 ]
  17. Chehrazi BB, Giri S, Joy RM: Prostaglandins and vasoactive amines in cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke. 1989 Feb;20(2):217-24. [PubMed:2465585 ]
  18. Mello SB, Barros DM, Silva AS, Laurindo IM, Novaes GS: Methotrexate as a preferential cyclooxygenase 2 inhibitor in whole blood of patients with rheumatoid arthritis. Rheumatology (Oxford). 2000 May;39(5):533-6. [PubMed:10852985 ]
  19. De La Cruz JP, Villalobos MA, Escalante R, Guerrero A, Arrebola MM, Sanchez de La Cuesta F: Effects of the selective inhibition of platelet thromboxane synthesis on the platelet-subendothelium interaction. Br J Pharmacol. 2002 Dec;137(7):1082-8. [PubMed:12429581 ]


General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
Receptor for thromboxane A2 (TXA2), a potent stimulator of platelet aggregation. The activity of this receptor is mediated by a G-protein that activates a phosphatidylinositol-calcium second messenger system. In the kidney, the binding of TXA2 to glomerular TP receptors causes intense vasoconstriction. Activates phospholipase C. Isoform 1 activates adenylyl cyclase. Isoform 2 inhibits adenylyl cyclase
Gene Name:
Uniprot ID:
Molecular weight: