Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected and Quantified
Creation Date2006-08-14 00:02:12 UTC
Update Date2022-03-07 02:49:21 UTC
Secondary Accession Numbers
  • HMDB0003978
  • HMDB0010409
  • HMDB03978
  • HMDB04673
  • HMDB10409
Metabolite Identification
Common Name11,12-Epoxyeicosatrienoic acid
Description11,12-Epoxyeicosatrienoic acid (CAS: 81276-02-0) is an epoxyeicosatrienoic acid (EET). Induction of CYP2C8 in native coronary artery endothelial cells by beta-naphthoflavone enhances the formation of 11,12-epoxyeicosatrienoic acid, as well as endothelium-derived hyperpolarizing factor-mediated hyperpolarization and relaxation. Transfection of coronary arteries with CYP2C8 antisense oligonucleotides resulted in decreased levels of CYP2C and attenuated the endothelium-derived hyperpolarizing factor-mediated vascular responses. Thus, a CYP-epoxygenase product is an essential component of the endothelium-derived hyperpolarizing factor-mediated relaxation in the porcine coronary artery, and CYP2C8 fulfills the criteria for the coronary endothelium-derived hyperpolarization factor synthase. The role of EETs in the regulation of the cerebral circulation has become more important since it was realized that EETs are produced in another specialized cell type of the brain, the astrocytes. It has become evident that EETs released from astrocytes may mediate cerebral functional hyperemia. Molecular and pharmacological evidence has shown that neurotransmitter release and spillover onto astrocytes can generate EETs. Since these EETs may reach the vasculature via astrocyte foot-processes, they have the same potential as their endothelial counterparts to hyperpolarize and dilate cerebral vessels. P450 enzymes contain heme in their catalytic domain and nitric oxide (NO) appears to bind to these heme moieties and block formation of P450 products, including EETs. Thus, there appears to be crosstalk between P450 enzymes and NO/NO synthase. The role of fatty acid metabolites and cerebral blood flow becomes even more complex in light of data demonstrating that cyclooxygenase products can act as substrates for P450 enzymes (PMID: 17494091 , 17434916 , 17406062 , 17361113 , 15581597 , 11413051 , 10519554 ). EETs function as autocrine and paracrine mediators. During inflammation, a large amount of arachidonic acid (AA) is released into the cellular milieu and cyclooxygenase enzymes convert this AA to prostaglandins that in turn sensitize pain pathways. However, AA is also converted into natural EETs by cytochrome P450 enzymes. Cytochrome P450 (CYP) epoxygenases convert arachidonic acid into four epoxyeicosatrienoic acid (EET) regioisomers, 5,6-, 8,9-, 11,12-, and 14,15-EET. EETs produce vascular relaxation by activating smooth muscle large-conductance Ca2+-activated K+ channels. In particular, 11,12-epoxy-5Z,8Z,14Z-eicosatrienoic acid has been shown to play a role in the recovery of depleted Ca2+ pools in cultured smooth muscle cells (PMID: 9368016 ). In addition, EETs have anti-inflammatory effects on blood vessels and in the kidney, promote angiogenesis, and protect ischemic myocardium and the brain. EET levels are typically regulated by soluble epoxide hydrolase (sEH), the major enzyme degrading EETs. Specifically, soluble epoxide hydrolase (sEH) converts EETs into dihydroxyeicosatrienoic acids.
(11S,12R)-Epoxy-(5Z,8Z,14Z)-eicosatrienoic acidChEBI
(11S,12R)-Epoxy-(5Z,8Z,14Z)-icosatrienoic acidChEBI
11S,12R-Epoxy-5Z,8Z,14Z-eicosatrienoic acidChEBI
11,12-Epoxy-5,8,14-eicosatrienoic acid, (2alpha(5Z,8Z),3alpha(Z))-isomerHMDB
11,12-Oxido-5,8,14-eicosatrienoic acidHMDB
11(12)-Epoxy-5Z,8Z,14Z-eicosatrienoic acidHMDB
11,12-Epoxy-5,8,14-eicosatrienoic acidHMDB
(11S,12R)-Oxidoarachidonic acidHMDB
(5Z,8Z)-10-[(2S,3R)-3-(2Z)-2-Octen-1-yl-2-oxiranyl]-5,8-decadienoic acidHMDB
(5Z,8Z)-10-[3-(2Z)-2-Octen-1-yl-2-oxiranyl]-5,8-decadienoic acidHMDB
10-[3-(2-Octen-1-yl)-2-oxiranyl]-5,8-decadienoic acidHMDB
10-[3-(2-Octenyl)oxiranyl]-5,8-decadienoic acidHMDB
11,12-Epoxyeicosa-5,8,14-trienoic acidHMDB
11,12-Epoxyeicosatrienoic acidHMDB
Chemical FormulaC20H32O3
Average Molecular Weight320.473
Monoisotopic Molecular Weight320.23514489
IUPAC Name(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid
Traditional Name(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid
CAS Registry Number123931-40-8
InChI Identifier
Chemical Taxonomy
Description Belongs to the class of organic compounds known as hepoxilins. These are eicosanoids containing an oxirane group attached to the fatty acyl chain.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassEicosanoids
Direct ParentHepoxilins
Alternative Parents
  • Hepoxilin
  • Medium-chain fatty acid
  • Epoxy fatty acid
  • Heterocyclic fatty acid
  • Unsaturated fatty acid
  • Fatty acid
  • Carboxylic acid derivative
  • Carboxylic acid
  • Dialkyl ether
  • Oxirane
  • Ether
  • Monocarboxylic acid or derivatives
  • Organoheterocyclic compound
  • Oxacycle
  • Organic oxide
  • Hydrocarbon derivative
  • Carbonyl group
  • Organooxygen compound
  • Organic oxygen compound
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors

Biological location



Naturally occurring process

Physical Properties
Experimental Molecular Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Water Solubility0.00033 g/LALOGPS
pKa (Strongest Acidic)4.82ChemAxon
pKa (Strongest Basic)-4.2ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area49.83 ŲChemAxon
Rotatable Bond Count14ChemAxon
Refractivity98.36 m³·mol⁻¹ChemAxon
Polarizability38.65 ųChemAxon
Number of Rings1ChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference

Predicted Kovats Retention Indices


MetaboliteSMILESKovats RI ValueColumn TypeReference
11,12-Epoxyeicosatrienoic acidCCCCC\C=C/C[C@H]1O[C@H]1C\C=C/C\C=C/CCCC(O)=O3694.5Standard polar33892256
11,12-Epoxyeicosatrienoic acidCCCCC\C=C/C[C@H]1O[C@H]1C\C=C/C\C=C/CCCC(O)=O2331.0Standard non polar33892256
11,12-Epoxyeicosatrienoic acidCCCCC\C=C/C[C@H]1O[C@H]1C\C=C/C\C=C/CCCC(O)=O2463.2Semi standard non polar33892256


Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
11,12-Epoxyeicosatrienoic acid,1TMS,isomer #1CCCCC/C=C\C[C@H]1O[C@H]1C/C=C\C/C=C\CCCC(=O)O[Si](C)(C)C2496.7Semi standard non polar33892256
11,12-Epoxyeicosatrienoic acid,1TBDMS,isomer #1CCCCC/C=C\C[C@H]1O[C@H]1C/C=C\C/C=C\CCCC(=O)O[Si](C)(C)C(C)(C)C2748.2Semi standard non polar33892256

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - 11,12-Epoxyeicosatrienoic acid GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - 11,12-Epoxyeicosatrienoic acid GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 11,12-Epoxyeicosatrienoic acid 10V, Negative-QTOFsplash10-014i-0009000000-8a30f962c830a060bbaa2021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 11,12-Epoxyeicosatrienoic acid 20V, Negative-QTOFsplash10-0gb9-0419000000-e44cb44d1b9170384b122021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 11,12-Epoxyeicosatrienoic acid 40V, Negative-QTOFsplash10-0006-9761000000-d3c981434cabe58776332021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 11,12-Epoxyeicosatrienoic acid 10V, Positive-QTOFsplash10-0uki-2339000000-dbc9012403da685e17bf2021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 11,12-Epoxyeicosatrienoic acid 20V, Positive-QTOFsplash10-0udu-9645000000-0a0c6b80e626735811c52021-09-25Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 11,12-Epoxyeicosatrienoic acid 40V, Positive-QTOFsplash10-05po-9200000000-27dc327d0927da0eb2082021-09-25Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane (predicted from logP)
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
Tissue Locations
  • Epidermis
Normal Concentrations
BloodDetected and Quantified0.000303+/- 0.000023 uMAdult (>18 years old)Not SpecifiedNormal details
BloodDetected and Quantified0.000303 +/- 0.000028 uMAdult (>18 years old)Both
BloodDetected and Quantified0.00102 +/- 0.0014 uMAdult (>18 years old)Both
Cerebrospinal Fluid (CSF)Detected and Quantified0.00001 +/- 0.00002 uMAdult (>18 years old)Both
    • John W. Newman, U...
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB027560
KNApSAcK IDNot Available
Chemspider ID23208913
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound40490664
PDB IDNot Available
ChEBI ID132276
Food Biomarker OntologyNot Available
VMH IDC14770
MarkerDB IDNot Available
Good Scents IDNot Available
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Download (PDF)
General References
  1. Sacerdoti D, Gatta A, McGiff JC: Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat. 2003 Oct;72(1-2):51-71. [PubMed:14626496 ]
  2. Catella F, Lawson JA, Fitzgerald DJ, FitzGerald GA: Endogenous biosynthesis of arachidonic acid epoxides in humans: increased formation in pregnancy-induced hypertension. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5893-7. [PubMed:2198572 ]
  3. Fang X, Kaduce TL, VanRollins M, Weintraub NL, Spector AA: Conversion of epoxyeicosatrienoic acids (EETs) to chain-shortened epoxy fatty acids by human skin fibroblasts. J Lipid Res. 2000 Jan;41(1):66-74. [PubMed:10627503 ]
  4. Archer SL, Gragasin FS, Wu X, Wang S, McMurtry S, Kim DH, Platonov M, Koshal A, Hashimoto K, Campbell WB, Falck JR, Michelakis ED: Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation. 2003 Feb 11;107(5):769-76. [PubMed:12578883 ]
  5. Potente M, Michaelis UR, Fisslthaler B, Busse R, Fleming I: Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. J Biol Chem. 2002 May 3;277(18):15671-6. Epub 2002 Feb 26. [PubMed:11867622 ]
  6. Lundblad MS, Stark K, Eliasson E, Oliw E, Rane A: Biosynthesis of epoxyeicosatrienoic acids varies between polymorphic CYP2C enzymes. Biochem Biophys Res Commun. 2005 Feb 25;327(4):1052-7. [PubMed:15652503 ]
  7. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK: Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science. 1999 Aug 20;285(5431):1276-9. [PubMed:10455056 ]
  8. Luo G, Zeldin DC, Blaisdell JA, Hodgson E, Goldstein JA: Cloning and expression of murine CYP2Cs and their ability to metabolize arachidonic acid. Arch Biochem Biophys. 1998 Sep 1;357(1):45-57. [PubMed:9721182 ]
  9. Schafer W, Werner K, Schweer H, Schneider J, Zahradnik HP: Formation of cytochrome P450 metabolites of arachidonic acid by human placenta. Adv Exp Med Biol. 1997;433:411-3. [PubMed:9561183 ]
  10. VanRollins M, Kaduce TL, Knapp HR, Spector AA: 14,15-Epoxyeicosatrienoic acid metabolism in endothelial cells. J Lipid Res. 1993 Nov;34(11):1931-42. [PubMed:8263417 ]
  11. Thum T, Borlak J: Mechanistic role of cytochrome P450 monooxygenases in oxidized low-density lipoprotein-induced vascular injury: therapy through LOX-1 receptor antagonism? Circ Res. 2004 Jan 9;94(1):e1-13. Epub 2003 Dec 4. [PubMed:14656932 ]
  12. Potente M, Fisslthaler B, Busse R, Fleming I: 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. J Biol Chem. 2003 Aug 8;278(32):29619-25. Epub 2003 May 28. [PubMed:12773534 ]
  13. Fisslthaler B, Popp R, Michaelis UR, Kiss L, Fleming I, Busse R: Cyclic stretch enhances the expression and activity of coronary endothelium-derived hyperpolarizing factor synthase. Hypertension. 2001 Dec 1;38(6):1427-32. [PubMed:11751730 ]
  14. Fukao M, Mason HS, Kenyon JL, Horowitz B, Keef KD: Regulation of BK(Ca) channels expressed in human embryonic kidney 293 cells by epoxyeicosatrienoic acid. Mol Pharmacol. 2001 Jan;59(1):16-23. [PubMed:11125019 ]
  15. Daikh BE, Lasker JM, Raucy JL, Koop DR: Regio- and stereoselective epoxidation of arachidonic acid by human cytochromes P450 2C8 and 2C9. J Pharmacol Exp Ther. 1994 Dec;271(3):1427-33. [PubMed:7996455 ]
  16. Pritchard KA Jr, Wong PY, Stemerman MB: Atherogenic concentrations of low-density lipoprotein enhance endothelial cell generation of epoxyeicosatrienoic acid products. Am J Pathol. 1990 Jun;136(6):1383-91. [PubMed:2356865 ]
  17. Sun J, Sui X, Bradbury JA, Zeldin DC, Conte MS, Liao JK: Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ Res. 2002 May 17;90(9):1020-7. [PubMed:12016269 ]
  18. Zeldin DC, Foley J, Ma J, Boyle JE, Pascual JM, Moomaw CR, Tomer KB, Steenbergen C, Wu S: CYP2J subfamily P450s in the lung: expression, localization, and potential functional significance. Mol Pharmacol. 1996 Nov;50(5):1111-7. [PubMed:8913342 ]
  19. Rifkind AB, Lee C, Chang TK, Waxman DJ: Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys. 1995 Jul 10;320(2):380-9. [PubMed:7625847 ]
  20. Spiecker M, Liao JK: Vascular protective effects of cytochrome p450 epoxygenase-derived eicosanoids. Arch Biochem Biophys. 2005 Jan 15;433(2):413-20. [PubMed:15581597 ]
  21. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP, Busse R: Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res. 2001 Jan 19;88(1):44-51. [PubMed:11139472 ]
  22. Popp R, Brandes RP, Ott G, Busse R, Fleming I: Dynamic modulation of interendothelial gap junctional communication by 11,12-epoxyeicosatrienoic acid. Circ Res. 2002 Apr 19;90(7):800-6. [PubMed:11964373 ]
  23. Revtyak GE, Hughes MJ, Johnson AR, Campbell WB: Histamine stimulation of prostaglandin and HETE synthesis in human endothelial cells. Am J Physiol. 1988 Aug;255(2 Pt 1):C214-25. [PubMed:3407766 ]
  24. Fitzpatrick FA, Ennis MD, Baze ME, Wynalda MA, McGee JE, Liggett WF: Inhibition of cyclooxygenase activity and platelet aggregation by epoxyeicosatrienoic acids. Influence of stereochemistry. J Biol Chem. 1986 Nov 15;261(32):15334-8. [PubMed:3095326 ]
  25. Anton R, Abian J, Vila L: Characterization of arachidonic acid metabolites through the 12-lipoxygenase pathway in human epidermis by high-performance liquid chromatography and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 1995;Spec No:S169-82. [PubMed:8829479 ]
  26. Arima S, Endo Y, Yaoita H, Omata K, Ogawa S, Tsunoda K, Abe M, Takeuchi K, Abe K, Ito S: Possible role of P-450 metabolite of arachidonic acid in vasodilator mechanism of angiotensin II type 2 receptor in the isolated microperfused rabbit afferent arteriole. J Clin Invest. 1997 Dec 1;100(11):2816-23. [PubMed:9389747 ]
  27. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R: Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature. 1999 Sep 30;401(6752):493-7. [PubMed:10519554 ]
  28. Zhu Y, Schieber EB, McGiff JC, Balazy M: Identification of arachidonate P-450 metabolites in human platelet phospholipids. Hypertension. 1995 Apr;25(4 Pt 2):854-9. [PubMed:7721444 ]
  29. McGee J, Fitzpatrick F: Enzymatic hydration of leukotriene A4. Purification and characterization of a novel epoxide hydrolase from human erythrocytes. J Biol Chem. 1985 Oct 15;260(23):12832-7. [PubMed:2995393 ]
  30. Catella F, Lawson J, Braden G, Fitzgerald DJ, Shipp E, FitzGerald GA: Biosynthesis of P450 products of arachidonic acid in humans: increased formation in cardiovascular disease. Adv Prostaglandin Thromboxane Leukot Res. 1991;21A:193-6. [PubMed:1705382 ]
  31. Michaelis UR, Falck JR, Schmidt R, Busse R, Fleming I: Cytochrome P4502C9-derived epoxyeicosatrienoic acids induce the expression of cyclooxygenase-2 in endothelial cells. Arterioscler Thromb Vasc Biol. 2005 Feb;25(2):321-6. Epub 2004 Nov 29. [PubMed:15569819 ]
  32. Lu T, Hong MP, Lee HC: Molecular determinants of cardiac K(ATP) channel activation by epoxyeicosatrienoic acids. J Biol Chem. 2005 May 13;280(19):19097-104. Epub 2005 Mar 10. [PubMed:15760904 ]
  33. Larsen BT, Miura H, Hatoum OA, Campbell WB, Hammock BD, Zeldin DC, Falck JR, Gutterman DD: Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H491-9. Epub 2005 Oct 28. [PubMed:16258029 ]
  34. Campbell WB: New role for epoxyeicosatrienoic acids as anti-inflammatory mediators. Trends Pharmacol Sci. 2000 Apr;21(4):125-7. [PubMed:10740283 ]
  35. Wu S, Chen W, Murphy E, Gabel S, Tomer KB, Foley J, Steenbergen C, Falck JR, Moomaw CR, Zeldin DC: Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. J Biol Chem. 1997 May 9;272(19):12551-9. [PubMed:9139707 ]
  36. Muller DN, Theuer J, Shagdarsuren E, Kaergel E, Honeck H, Park JK, Markovic M, Barbosa-Sicard E, Dechend R, Wellner M, Kirsch T, Fiebeler A, Rothe M, Haller H, Luft FC, Schunck WH: A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury. Am J Pathol. 2004 Feb;164(2):521-32. [PubMed:14742258 ]
  37. Karara A, Dishman E, Jacobson H, Falck JR, Capdevila JH: Arachidonic acid epoxygenase. Stereochemical analysis of the endogenous epoxyeicosatrienoic acids of human kidney cortex. FEBS Lett. 1990 Jul 30;268(1):227-30. [PubMed:2384159 ]
  38. Medhora M, Narayanan J, Harder D: Dual regulation of the cerebral microvasculature by epoxyeicosatrienoic acids. Trends Cardiovasc Med. 2001 Jan;11(1):38-42. [PubMed:11413051 ]
  39. Dray F, Vulliez-Le Normand B, Deroussent A, Briquet I, Gabellec MM, Nakamura S, Wahl LM, Gouyette A, Salahuddin ZS: Active metabolism of arachidonic acid by Kaposi sarcoma cells cultured from lung biopsies (KS-3); identification by HPLC and MS/MS of the predominant metabolite secreted as the 11,12-epoxy-eicosatrienoic acid. Biochim Biophys Acta. 1992 Oct 13;1180(1):83-90. [PubMed:1390946 ]
  40. Michaelis UR, Fisslthaler B, Medhora M, Harder D, Fleming I, Busse R: Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). FASEB J. 2003 Apr;17(6):770-2. Epub 2003 Feb 5. [PubMed:12586744 ]
  41. Jacobs ER, Zeldin DC: The lung HETEs (and EETs) up. Am J Physiol Heart Circ Physiol. 2001 Jan;280(1):H1-H10. [PubMed:11123211 ]
  42. Kiss L, Schutte H, Mayer K, Grimm H, Padberg W, Seeger W, Grimminger F: Synthesis of arachidonic acid-derived lipoxygenase and cytochrome P450 products in the intact human lung vasculature. Am J Respir Crit Care Med. 2000 Jun;161(6):1917-23. [PubMed:10852767 ]
  43. Honda HM, Leitinger N, Frankel M, Goldhaber JI, Natarajan R, Nadler JL, Weiss JN, Berliner JA: Induction of monocyte binding to endothelial cells by MM-LDL: role of lipoxygenase metabolites. Arterioscler Thromb Vasc Biol. 1999 Mar;19(3):680-6. [PubMed:10073973 ]
  44. Xiao YF, Ke Q, Seubert JM, Bradbury JA, Graves J, Degraff LM, Falck JR, Krausz K, Gelboin HV, Morgan JP, Zeldin DC: Enhancement of cardiac L-type Ca2+ currents in transgenic mice with cardiac-specific overexpression of CYP2J2. Mol Pharmacol. 2004 Dec;66(6):1607-16. Epub 2004 Sep 10. [PubMed:15361551 ]
  45. Node K, Ruan XL, Dai J, Yang SX, Graham L, Zeldin DC, Liao JK: Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J Biol Chem. 2001 May 11;276(19):15983-9. Epub 2001 Feb 22. [PubMed:11279071 ]
  46. Fleming I, Fisslthaler B, Michaelis UR, Kiss L, Popp R, Busse R: The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. Pflugers Arch. 2001 Jul;442(4):511-8. [PubMed:11510882 ]
  47. Falck JR, Reddy LM, Reddy YK, Bondlela M, Krishna UM, Ji Y, Sun J, Liao JK: 11,12-epoxyeicosatrienoic acid (11,12-EET): structural determinants for inhibition of TNF-alpha-induced VCAM-1 expression. Bioorg Med Chem Lett. 2003 Nov 17;13(22):4011-4. [PubMed:14592496 ]
  48. Krotz F, Riexinger T, Buerkle MA, Nithipatikom K, Gloe T, Sohn HY, Campbell WB, Pohl U: Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids. Arterioscler Thromb Vasc Biol. 2004 Mar;24(3):595-600. Epub 2004 Jan 8. [PubMed:14715644 ]
  49. Quilley J, McGiff JC: Is EDHF an epoxyeicosatrienoic acid? Trends Pharmacol Sci. 2000 Apr;21(4):121-4. [PubMed:10740282 ]
  50. Treluyer JM, Benech H, Colin I, Pruvost A, Cheron G, Cresteil T: Ontogenesis of CYP2C-dependent arachidonic acid metabolism in the human liver: relationship with sudden infant death syndrome. Pediatr Res. 2000 May;47(5):677-83. [PubMed:10813596 ]
  51. Kotlikoff MI: EDHF redux: EETs, TRPV4, and Ca2+ sparks. Circ Res. 2005 Dec 9;97(12):1209-10. [PubMed:16339490 ]
  52. Mombouli JV, Holzmann S, Kostner GM, Graier WF: Potentiation of Ca2+ signaling in endothelial cells by 11,12-epoxyeicosatrienoic acid. J Cardiovasc Pharmacol. 1999 May;33(5):779-84. [PubMed:10226866 ]
  53. Ulsaker GA, Teien G: Gas chromatographic-mass spectrometric identification of four triene monoepoxides of arachidonic acid in human plasma. Analyst. 1990 Mar;115(3):259-62. [PubMed:2327589 ]
  54. Michaelis UR, Fisslthaler B, Barbosa-Sicard E, Falck JR, Fleming I, Busse R: Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. J Cell Sci. 2005 Dec 1;118(Pt 23):5489-98. Epub 2005 Nov 15. [PubMed:16291720 ]
  55. Balazy M, Schieber EB, McGiff JC: Identification of arachidonate epoxides in human platelets. Adv Prostaglandin Thromboxane Leukot Res. 1995;23:199-201. [PubMed:7732834 ]
  56. VanRollins M: Epoxygenase metabolites of docosahexaenoic and eicosapentaenoic acids inhibit platelet aggregation at concentrations below those affecting thromboxane synthesis. J Pharmacol Exp Ther. 1995 Aug;274(2):798-804. [PubMed:7636743 ]
  57. Graber MN, Alfonso A, Gill DL: Recovery of Ca2+ pools and growth in Ca2+ pool-depleted cells is mediated by specific epoxyeicosatrienoic acids derived from arachidonic acid. J Biol Chem. 1997 Nov 21;272(47):29546-53. [PubMed:9368016 ]
  58. Hao CM, Breyer MD: Physiologic and pathophysiologic roles of lipid mediators in the kidney. Kidney Int. 2007 Jun;71(11):1105-15. Epub 2007 Mar 14. [PubMed:17361113 ]
  59. Nusing RM, Schweer H, Fleming I, Zeldin DC, Wegmann M: Epoxyeicosatrienoic acids affect electrolyte transport in renal tubular epithelial cells: dependence on cyclooxygenase and cell polarity. Am J Physiol Renal Physiol. 2007 Jul;293(1):F288-98. doi: 10.1152/ajprenal.00171.2006. Epub 2007 May 9. [PubMed:17494091 ]
  60. Metea MR, Newman EA: Signalling within the neurovascular unit in the mammalian retina. Exp Physiol. 2007 Jul;92(4):635-40. doi: 10.1113/expphysiol.2006.036376. Epub 2007 Apr 13. [PubMed:17434916 ]
  61. Loch D, Hoey A, Morisseau C, Hammock BO, Brown L: Prevention of hypertension in DOCA-salt rats by an inhibitor of soluble epoxide hydrolase. Cell Biochem Biophys. 2007;47(1):87-98. [PubMed:17406062 ]

Only showing the first 10 proteins. There are 27 proteins in total.


General function:
Involved in monooxygenase activity
Specific function:
Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate, myristate and palmitate. Has little activity toward prostaglandins A1 and E1. Oxidizes arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE).
Gene Name:
Uniprot ID:
Molecular weight:
Arachidonic acid + Oxygen + NADPH + Hydrogen Ion → 11,12-Epoxyeicosatrienoic acid + NADP + Waterdetails
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in monooxygenase activity
Specific function:
Exhibits low testosterone 6-beta-hydroxylase activity.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Participates in the metabolism of an as-yet-unknown biologically active molecule that is a participant in eye development.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Secondary metabolites biosynthesis, transport and catabolism
Specific function:
May be involved in the metabolism of various pneumotoxicants including naphthalene. Is able to dealkylate ethoxycoumarin, propoxycoumarin, and pentoxyresorufin but possesses no activity toward ethoxyresorufin and only trace dearylation activity toward benzyloxyresorufin. Bioactivates 3-methylindole (3MI) by dehydrogenation to the putative electrophile 3-methylene-indolenine.
Gene Name:
Uniprot ID:
Molecular weight:
General function:
Involved in monooxygenase activity
Specific function:
Not Available
Gene Name:
Uniprot ID:
Molecular weight:

Only showing the first 10 proteins. There are 27 proteins in total.