Survey with prize
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2008-09-26 14:11:36 UTC
Update Date2020-02-26 21:34:23 UTC
HMDB IDHMDB0010701
Secondary Accession Numbers
  • HMDB10701
Metabolite Identification
Common NameCerP(d18:1/18:0)
DescriptionCerP(d18:1/18:0), also known as N-octadecanoyl-sphing-4-enine-1-phosphate, is a ceramide phosphate (CerP). Ceramide phosphates are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramide phosphate are formed from ceramides by the action of a specific ceramide kinase (CerK) and can be dephosphorylated by phosphatidate phosphatase back to the ceramide. CerPs are an important metabolite of ceramide as it acts as a mediator of the inflammatory response. CerPs are also known to have a dual regulatory capacity acting as intracellular second messengers to regulate cell survival, or as extracellular receptor ligands to stimulate chemotaxis. Moreover, CerPs have been shown to be specific and potent inducers of arachidonic acid and prostanoid synthesis in cells through the translocation and activation of cytoplasmic phospholipase A2. In terms of its appearance and structure, CerP(d18:1/18:0) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached saturated octadecanoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481 ).
Structure
Data?1582752863
Synonyms
ValueSource
C18 CerPChEBI
N-Octadecanoylsphing-4-enine 1-phosphateChEBI
N-Stearoylsphing-4-enine 1-phosphateChEBI
N-Stearoylsphingosine 1-phosphateChEBI
N-Octadecanoylsphing-4-enine 1-phosphoric acidGenerator
N-Stearoylsphing-4-enine 1-phosphoric acidGenerator
N-Stearoylsphingosine 1-phosphoric acidGenerator
N-(Octadecanoyl)-sphing-4-enine-1-phosphateHMDB
[(e,2S,3R)-3-Hydroxy-2-(octadecanoylamino)octadec-4-enyl] dihydrogen phosphateHMDB
Ceramide phosphateMetBuilder
N-(Octadecanoyl)-1-phosphate-sphing-4-enineMetBuilder
Ceramide phosphate(D18:1/18:0)MetBuilder
N-(Octadecanoyl)-1-phosphate-sphingosineMetBuilder
N-(Octadecanoyl)-1-phosphate-D-erythro-sphingosineMetBuilder
N-(Octadecanoyl)-1-phosphate-4-sphingenineMetBuilder
N-(Octadecanoyl)-1-phosphate-D-sphingosineMetBuilder
N-(Octadecanoyl)-1-phosphate-sphingenineMetBuilder
N-(Octadecanoyl)-1-phosphate-erythro-4-sphingenineMetBuilder
Chemical FormulaC36H72NO6P
Average Molecular Weight645.9337
Monoisotopic Molecular Weight645.509725553
IUPAC Name{[(2S,3R,4E)-3-hydroxy-2-octadecanamidooctadec-4-en-1-yl]oxy}phosphonic acid
Traditional NameC18 CerP
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCCCCCCCC(=O)N[C@@]([H])(COP(=O)(O)O)[C@]([H])(O)\C=C\CCCCCCCCCCCCC
InChI Identifier
InChI=1S/C36H72NO6P/c1-3-5-7-9-11-13-15-17-18-20-22-24-26-28-30-32-36(39)37-34(33-43-44(40,41)42)35(38)31-29-27-25-23-21-19-16-14-12-10-8-6-4-2/h29,31,34-35,38H,3-28,30,32-33H2,1-2H3,(H,37,39)(H2,40,41,42)/b31-29+/t34-,35+/m0/s1
InChI KeyZQQLMECVOXKFJK-NXCSZAMKSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as phosphosphingolipids. These are sphingolipids with a structure based on a sphingoid base that is attached to a phosphate head group. They differ from phosphonospingolipids which have a phosphonate head group.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassSphingolipids
Sub ClassPhosphosphingolipids
Direct ParentPhosphosphingolipids
Alternative Parents
Substituents
  • Sphingoid-1-phosphate or derivatives
  • Phosphoethanolamine
  • Monoalkyl phosphate
  • Fatty amide
  • N-acyl-amine
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Alkyl phosphate
  • Fatty acyl
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Carboxamide group
  • Carboxylic acid derivative
  • Organic nitrogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Organic oxygen compound
  • Alcohol
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Organic oxide
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect

Organoleptic effect:

Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility8.8e-05 g/LALOGPS
logP8.68ALOGPS
logP11.47ChemAxon
logS-6.9ALOGPS
pKa (Strongest Acidic)1.53ChemAxon
pKa (Strongest Basic)0.00068ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count4ChemAxon
Polar Surface Area116.09 ŲChemAxon
Rotatable Bond Count34ChemAxon
Refractivity185.85 m³·mol⁻¹ChemAxon
Polarizability82.26 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra
Not Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue Locations
  • All Tissues
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB027851
KNApSAcK IDNot Available
Chemspider ID4446696
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound5283583
PDB IDNot Available
ChEBI ID73144
Food Biomarker OntologyNot Available
VMH IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
  2. Ghosh S, Strum JC, Bell RM: Lipid biochemistry: functions of glycerolipids and sphingolipids in cellular signaling. FASEB J. 1997 Jan;11(1):45-50. [PubMed:9034165 ]
  3. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  4. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  5. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  6. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  7. Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
  8. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.