You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2008-12-10 02:09:11 UTC
Update Date2021-09-14 15:00:44 UTC
HMDB IDHMDB0011420
Secondary Accession Numbers
  • HMDB11420
Metabolite Identification
Common NamePE(P-18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z))
DescriptionPhosphatidylethanolamines (cephalin, sometimes abbreviated PE) are a class of phospholipids found in biological membranes. They are synthesized by the addition of CDP-ethanolamine to diglycerides, releasing CMP. S-Adenosyl methionine can subsequently methylate the amine of phosphatidylethanolamines to yield phosphatidylcholines (Wikipedia). Cephalin is a phospholipid, which is a lipid derivative. It is not to be confused with the molecule of the same name that is an alkaloid constituent of Ipecac. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
Structure
Data?1582752904
Synonyms
ValueSource
(2-Aminoethoxy)[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinateHMDB
1-(1Z,11Z-Octadecadienyl)-2-eicosapentaenoyl-gpeHMDB
1-(1Z,11Z-Octadecadienyl)-2-eicosapentaenoyl-sn-glycero-3-phosphoethanolamineHMDB
1-(1Z,11Z-Octadecadienyl)-2-eicosapentaenoyl-sn-glycero-phosphatidylethanolamineHMDB
GPE(18:2/20:5)HMDB
GPE(38:7)HMDB
GPE(O-18:2(1Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z))HMDB
GPE(O-18:2(1Z,11Z)/20:5n3)HMDB
GPE(O-18:2(1Z,11Z)/20:5W3)HMDB
GPE(p-18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z))HMDB
GPE(p-18:1(11Z)/20:5n3)HMDB
GPE(p-18:1(11Z)/20:5W3)HMDB
GPEtn(18:2/20:5)HMDB
GPEtn(38:7)HMDB
GPEtn(O-18:2(1Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z))HMDB
GPEtn(O-18:2(1Z,11Z)/20:5n3)HMDB
GPEtn(O-18:2(1Z,11Z)/20:5W3)HMDB
GPEtn(p-18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z))HMDB
GPEtn(p-18:1(11Z)/20:5n3)HMDB
GPEtn(p-18:1(11Z)/20:5W3)HMDB
PE(18:2/20:5)HMDB
PE(38:7)HMDB
PE(O-18:2(1Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z))HMDB
PE(O-18:2(1Z,11Z)/20:5N3)HMDB
PE(O-18:2(1Z,11Z)/20:5W3)HMDB
PE(P-18:1(11Z)/20:5N3)HMDB
PE(P-18:1(11Z)/20:5W3)HMDB
Phosphatidylethanolamine(18:2/20:5)HMDB
Phosphatidylethanolamine(38:7)HMDB
Phosphatidylethanolamine(O-18:2(1Z,11Z)/20:5(5Z,8Z,11Z,14Z,17Z))HMDB
Phosphatidylethanolamine(O-18:2(1Z,11Z)/20:5n3)HMDB
Phosphatidylethanolamine(O-18:2(1Z,11Z)/20:5W3)HMDB
Phosphatidylethanolamine(p-18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z))HMDB
Phosphatidylethanolamine(p-18:1(11Z)/20:5n3)HMDB
Phosphatidylethanolamine(p-18:1(11Z)/20:5W3)HMDB
Chemical FormulaC43H74NO7P
Average Molecular Weight748.0239
Monoisotopic Molecular Weight747.520290239
IUPAC Name(2-aminoethoxy)[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxy]phosphinic acid
Traditional Name2-aminoethoxy(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyloxy]-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propoxyphosphinic acid
CAS Registry NumberNot Available
SMILES
[H][C@@](CO\C=C/CCCCCCCC\C=C/CCCCCC)(COP(O)(=O)OCCN)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC
InChI Identifier
InChI=1S/C43H74NO7P/c1-3-5-7-9-11-13-15-17-19-21-22-24-26-28-30-32-34-36-43(45)51-42(41-50-52(46,47)49-39-37-44)40-48-38-35-33-31-29-27-25-23-20-18-16-14-12-10-8-6-4-2/h5,7,11,13-14,16-17,19,22,24,28,30,35,38,42H,3-4,6,8-10,12,15,18,20-21,23,25-27,29,31-34,36-37,39-41,44H2,1-2H3,(H,46,47)/b7-5-,13-11-,16-14-,19-17-,24-22-,30-28-,38-35-/t42-/m1/s1
InChI KeyRDLRIZLZWSNORN-FSOAWXQVSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as 1-(1z-alkenyl),2-acylglycerophosphoethanolamines. These are glycerophosphoethanolamines that carry exactly one acyl chain attached to the glycerol moiety through an ester linkage at the O2-position, and one 1Z-alkenyl chain attached through an ether linkage at the O1-position.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphoethanolamines
Direct Parent1-(1Z-alkenyl),2-acylglycerophosphoethanolamines
Alternative Parents
Substituents
  • 1-(1z-alkenyl),2-acylglycerophosphoethanolamine
  • Glycerol vinyl ether
  • Phosphoethanolamine
  • Fatty acid ester
  • Dialkyl phosphate
  • Fatty acyl
  • Alkyl phosphate
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Amino acid or derivatives
  • Carboxylic acid ester
  • Carboxylic acid derivative
  • Monocarboxylic acid or derivatives
  • Organic oxide
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Primary amine
  • Primary aliphatic amine
  • Organic oxygen compound
  • Amine
  • Carbonyl group
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Physiological effect

Organoleptic effect:

Disposition

Route of exposure:

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility7.1e-05 g/LALOGPS
logP8.97ALOGPS
logP11.34ChemAxon
logS-7ALOGPS
pKa (Strongest Acidic)1.87ChemAxon
pKa (Strongest Basic)10ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area117.31 ŲChemAxon
Rotatable Bond Count38ChemAxon
Refractivity225.65 m³·mol⁻¹ChemAxon
Polarizability87.99 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra

GC-MS

Spectrum TypeDescriptionSplash KeyDeposition DateView
MSMass Spectrum (Electron Ionization)splash10-01rt-7970400400-0c5d70b4226bd58cc9ed2021-09-05View Spectrum

LC-MS/MS

Spectrum TypeDescriptionSplash KeyDeposition DateView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0006-9021100200-7ac23768785e8ae5ab112016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0006-9021001000-528865017f3115ad299d2016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0006-9054011000-5dc5a3edbe57b6fa9fb42016-08-03View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0udm-2384701900-0845fc49fbfde05c89e42016-08-04View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-004l-9661300100-03bc9e9b753e821010312016-08-04View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-004i-9110000000-bc94ff42a3537e49f3e32016-08-04View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0002-3300000900-7ae0dd7d06ff567a2ef92021-09-06View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-00l5-4791800300-fb28d1d1d5a62db7f2dd2021-09-06View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-002f-7911100000-adf716e5ab92330ea23f2021-09-06View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-0002-3000007900-d5a619ba6988cb546ee92021-09-07View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-0a4i-5000019200-fdc092b14ceb5fa4e27b2021-09-07View Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0006-3962211000-88b96f3742975ef6559f2021-09-07View Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue Locations
  • All Tissues
  • Brain
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Predicted Concentrations
BiospecimenValueOriginal ageOriginal sexOriginal conditionComments
Blood1.953 +/- 2.686 uMAdult (>18 years old)BothNormal (Upper Limit)Concentration data updated from parsing Nick's...
Blood0.051 +/- 0.003 uMAdult (>18 years old)BothNormal (Most Probable)Concentration data updated from parsing Nick's...
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB005556
KNApSAcK IDNot Available
Chemspider ID24769304
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound53480880
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
  2. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  3. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  4. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  5. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  6. Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
  7. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 30 proteins in total.

Enzymes

General function:
Involved in protein binding
Specific function:
May have a role in signal-induced cytoskeletal regulation and/or endocytosis (By similarity).
Gene Name:
PLD2
Uniprot ID:
O14939
Molecular weight:
104656.485
General function:
Involved in protein binding
Specific function:
Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity).
Gene Name:
PLD1
Uniprot ID:
Q13393
Molecular weight:
124183.135
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP11C
Uniprot ID:
Q8NB49
Molecular weight:
129476.0
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP11A
Uniprot ID:
P98196
Molecular weight:
129754.6
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP10A
Uniprot ID:
O60312
Molecular weight:
167686.6
General function:
Involved in ATP binding
Specific function:
May play a role in the transport of aminophospholipids from the outer to the inner leaflet of various membranes and the maintenance of asymmetric distribution of phospholipids in the canicular membrane. May have a role in transport of bile acids into the canaliculus, uptake of bile acids from intestinal contents into intestinal mucosa or both
Gene Name:
ATP8B1
Uniprot ID:
O43520
Molecular weight:
143694.1
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP9A
Uniprot ID:
O75110
Molecular weight:
118581.5
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP10D
Uniprot ID:
Q9P241
Molecular weight:
160272.3
General function:
Involved in ATP binding
Specific function:
ATP + H(2)O + phospholipid(In) = ADP + phosphate + phospholipid(Out)
Gene Name:
ATP8A2
Uniprot ID:
Q9NTI2
Molecular weight:
129240.4
General function:
Involved in ATP binding
Specific function:
May play a role in the transport of aminophospholipids from the outer to the inner leaflet of various membranes and the maintenance of asymmetric distribution of phospholipids, mainly in secretory vesicles
Gene Name:
ATP8A1
Uniprot ID:
Q9Y2Q0
Molecular weight:
131368.2

Only showing the first 10 proteins. There are 30 proteins in total.