You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
StatusDetected and Quantified
Creation Date2009-11-02 23:11:25 UTC
Update Date2021-04-12 19:29:44 UTC
Secondary Accession Numbers
  • HMDB13127
Metabolite Identification
Common Name3-Hydroxybutyrylcarnitine
Description3-Hydroxybutyrylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxybutyric acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxybutyrylcarnitine is therefore classified as a short chain AC. As a short-chain acylcarnitine 3-hydroxybutyrylcarnitine is a member of the most abundant group of carnitines in the body, comprising more than 50% of all acylcarnitines quantified in tissues and biofluids (PMID: 31920980 ). Some short-chain carnitines have been studied as supplements or treatments for a number of diseases, including neurological disorders and inborn errors of metabolism. In particular 3-hydroxybutyrylcarnitine is elevated in the blood or plasma of individuals with short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency (PMID: 11489939 , PMID: 15870679 ), prediabetes (PMID: 28505362 ), T2DM (PMID: 28505362 ), metallosis (PMID: 30271721 ), mitochondrial acetoacetyl-coa thiolase deficiency (PMID: 20157782 ), and heart failure (PMID: 25881932 ). It is also decreased in the blood or plasma of individuals with psoriasis (PMID: 33391503 ). 3-Hydroxybutyrylcarnitine is elevated in the urine of individuals with renal cell carcinoma (PMID: 29658093 ). Carnitine acetyltransferase (CrAT, EC: is responsible for the synthesis of all short-chain and short branched-chain acylcarnitines (PMID: 23485643 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(3S)-3-{[(3R)-3-hydroxybutanoyl]oxy}-4-(trimethylazaniumyl)butanoic acidGenerator
Chemical FormulaC11H21NO5
Average Molecular Weight247.291
Monoisotopic Molecular Weight247.14197278
IUPAC Name(3S)-3-{[(3R)-3-hydroxybutanoyl]oxy}-4-(trimethylazaniumyl)butanoate
Traditional Name(3S)-3-{[(3R)-3-hydroxybutanoyl]oxy}-4-(trimethylammonio)butanoate
CAS Registry Number1469900-92-2
InChI Identifier
Chemical Taxonomy
Description belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentAcyl carnitines
Alternative Parents
  • Acyl-carnitine
  • Beta-hydroxy acid
  • Hydroxy acid
  • Dicarboxylic acid or derivatives
  • Tetraalkylammonium salt
  • Quaternary ammonium salt
  • Secondary alcohol
  • Carboxylic acid salt
  • Carboxylic acid ester
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organic salt
  • Organic zwitterion
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available

Route of exposure:


Biological location:


Naturally occurring process:


Industrial application:

Biological role:

Physical Properties
Experimental Properties
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
Water Solubility1.1 g/LALOGPS
pKa (Strongest Acidic)4.14ChemAxon
pKa (Strongest Basic)-2.6ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area86.66 ŲChemAxon
Rotatable Bond Count8ChemAxon
Refractivity83.46 m³·mol⁻¹ChemAxon
Polarizability25.51 ųChemAxon
Number of Rings0ChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Not Available
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue Locations
  • Placenta
Normal Concentrations
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.11 +/- 0.01 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.0960 (0.000-0.360) uMInfant (0-1 year old)Not Specified
BloodDetected and Quantified<0.400 uMInfant (0-1 year old)Not SpecifiedNormal details
BloodDetected and Quantified0.04 +/- 0.02 uMAdult (>18 years old)BothNormal details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
FecesDetected and Quantified0.6 +/- 0.36 nmol/g wet fecesAdult (>18 years old)Both
FecesDetected and Quantified0.32 +/- 0.2 nmol/g wet fecesAdult (>18 years old)Both
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
Abnormal Concentrations
BloodDetected and Quantified1.780 (0.920-3.0400) uMInfant (0-1 year old)Female
3-Hydroxyacyl-CoA dehydrogenase deficiency (SCHAD)
BloodDetected and Quantified0.200 (0.0800-0.500) uMInfant (0-1 year old)Not Specified
BloodDetected and Quantified0.180 (0.0600-0.360) uMInfant (0-1 year old)Not Specified
Short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency
BloodDetected and Quantified0.940-1.720 uMInfant (0-1 year old)Male3-Hydroxyacyl-CoA dehydrogenase deficiency (SCHAD) details
BloodDetected and Quantified0.660-0.810 uMInfant (0-1 year old)Male3-Hydroxyisobutyryl-coa hydrolase deficiency details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
Associated Disorders and Diseases
Disease References
3-Hydroxyacyl-CoA dehydrogenase deficiency
  1. Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE: Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest. 2001 Aug;108(3):457-65. [PubMed:11489939 ]
  2. Popa FI, Perlini S, Teofoli F, Degani D, Funghini S, La Marca G, Rinaldo P, Vincenzi M, Antoniazzi F, Boner A, Camilot M: 3-hydroxyacyl-coenzyme a dehydrogenase deficiency: identification of a new mutation causing hyperinsulinemic hypoketotic hypoglycemia, altered organic acids and acylcarnitines concentrations. JIMD Rep. 2012;2:71-7. doi: 10.1007/8904_2011_50. Epub 2011 Sep 6. [PubMed:23430856 ]
  1. Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE: Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest. 2001 Aug;108(3):457-65. [PubMed:11489939 ]
Short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency
  1. Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE: Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest. 2001 Aug;108(3):457-65. [PubMed:11489939 ]
3-Hydroxyisobutyryl-coa hydrolase deficiency
  1. Reuter MS, Sass JO, Leis T, Kohler J, Mayr JA, Feichtinger RG, Rauh M, Schanze I, Bahr L, Trollmann R, Uebe S, Ekici AB, Reis A: HIBCH deficiency in a patient with phenotypic characteristics of mitochondrial disorders. Am J Med Genet A. 2014 Dec;164A(12):3162-9. doi: 10.1002/ajmg.a.36766. Epub 2014 Sep 23. [PubMed:25251209 ]
Colorectal cancer
  1. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
  • 231530 (3-Hydroxyacyl-CoA dehydrogenase deficiency)
  • 250620 (3-Hydroxyisobutyryl-coa hydrolase deficiency)
  • 114500 (Colorectal cancer)
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDMDB00029837
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
  6. FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
  7. Makarova E, Makrecka-Kuka M, Vilks K, Volska K, Sevostjanovs E, Grinberga S, Zarkova-Malkova O, Dambrova M, Liepinsh E: Decreases in Circulating Concentrations of Long-Chain Acylcarnitines and Free Fatty Acids During the Glucose Tolerance Test Represent Tissue-Specific Insulin Sensitivity. Front Endocrinol (Lausanne). 2019 Dec 17;10:870. doi: 10.3389/fendo.2019.00870. eCollection 2019. [PubMed:31920980 ]
  8. Clayton PT, Eaton S, Aynsley-Green A, Edginton M, Hussain K, Krywawych S, Datta V, Malingre HE, Berger R, van den Berg IE: Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest. 2001 Aug;108(3):457-65. [PubMed:11489939 ]
  9. Hussain K, Clayton PT, Krywawych S, Chatziandreou I, Mills P, Ginbey DW, Geboers AJ, Berger R, van den Berg IE, Eaton S: Hyperinsulinism of infancy associated with a novel splice site mutation in the SCHAD gene. J Pediatr. 2005 May;146(5):706-8. doi: 10.1016/j.jpeds.2005.01.032. [PubMed:15870679 ]
  10. Zhong H, Fang C, Fan Y, Lu Y, Wen B, Ren H, Hou G, Yang F, Xie H, Jie Z, Peng Y, Ye Z, Wu J, Zi J, Zhao G, Chen J, Bao X, Hu Y, Gao Y, Zhang J, Yang H, Wang J, Madsen L, Kristiansen K, Ni C, Li J, Liu S: Lipidomic profiling reveals distinct differences in plasma lipid composition in healthy, prediabetic, and type 2 diabetic individuals. Gigascience. 2017 Jul 1;6(7):1-12. doi: 10.1093/gigascience/gix036. [PubMed:28505362 ]
  11. Stepien KM, Abidin Z, Lee G, Cullen R, Logan P, Pastores GM: Metallosis mimicking a metabolic disorder: a case report. Mol Genet Metab Rep. 2018 Sep 25;17:38-41. doi: 10.1016/j.ymgmr.2018.09.005. eCollection 2018 Dec. [PubMed:30271721 ]
  12. Catanzano F, Ombrone D, Di Stefano C, Rossi A, Nosari N, Scolamiero E, Tandurella I, Frisso G, Parenti G, Ruoppolo M, Andria G, Salvatore F: The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy: the importance of an integrated diagnostic approach. J Inherit Metab Dis. 2010 Dec;33 Suppl 3:S91-4. doi: 10.1007/s10545-009-9028-3. Epub 2010 Feb 16. [PubMed:20157782 ]
  13. Cheng ML, Wang CH, Shiao MS, Liu MH, Huang YY, Huang CY, Mao CT, Lin JF, Ho HY, Yang NI: Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J Am Coll Cardiol. 2015 Apr 21;65(15):1509-20. doi: 10.1016/j.jacc.2015.02.018. [PubMed:25881932 ]
  14. Chen C, Hou G, Zeng C, Ren Y, Chen X, Peng C: Metabolomic profiling reveals amino acid and carnitine alterations as metabolic signatures in psoriasis. Theranostics. 2021 Jan 1;11(2):754-767. doi: 10.7150/thno.51154. eCollection 2021. [PubMed:33391503 ]
  15. Niziol J, Bonifay V, Ossolinski K, Ossolinski T, Ossolinska A, Sunner J, Beech I, Arendowski A, Ruman T: Metabolomic study of human tissue and urine in clear cell renal carcinoma by LC-HRMS and PLS-DA. Anal Bioanal Chem. 2018 Jun;410(16):3859-3869. doi: 10.1007/s00216-018-1059-x. Epub 2018 Apr 16. [PubMed:29658093 ]
  16. Violante S, Ijlst L, Ruiter J, Koster J, van Lenthe H, Duran M, de Almeida IT, Wanders RJ, Houten SM, Ventura FV: Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism. Biochim Biophys Acta. 2013 Jun;1832(6):773-9. doi: 10.1016/j.bbadis.2013.02.012. Epub 2013 Feb 24. [PubMed:23485643 ]
  17. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.