Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2009-11-30 15:50:58 UTC
Update Date2021-09-14 14:59:58 UTC
HMDB IDHMDB0013207
Secondary Accession Numbers
  • HMDB13207
Metabolite Identification
Common Name9-Hexadecenoylcarnitine
Description9-Hexadecenoylcarnitine is an acylcarnitine. More specifically, it is an 9-hexadecenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 9-Hexadecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 9-hexadecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748 ). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular 9-hexadecenoylcarnitine is elevated in the blood or plasma of individuals with children obesity (PMID: 23108202 ). It is also decreased in the blood or plasma of individuals with familial Mediterranean fever (PMID: 29900937 ). 9-Hexadecenoylcarnitine is found to be associated with glutaric aciduria II, which is an inborn error of metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulin's inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774 ). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903 ). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Structure
Data?1582753100
Synonyms
ValueSource
(3R)-3-[(9Z)-Hexadec-9-enoyloxy]-4-(trimethylazaniumyl)butanoic acidHMDB
PalmitoleoylcarnitineHMDB
9-HexadecenoylcarnitineHMDB
Chemical FormulaC23H43NO4
Average Molecular Weight397.6
Monoisotopic Molecular Weight397.319208869
IUPAC Name(3R)-3-[(9Z)-hexadec-9-enoyloxy]-4-(trimethylazaniumyl)butanoate
Traditional Name(3R)-3-[(9Z)-hexadec-9-enoyloxy]-4-(trimethylammonio)butanoate
CAS Registry Number329321-94-0
SMILES
CCCCCC\C=C/CCCCCCCC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C
InChI Identifier
InChI=1S/C23H43NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-23(27)28-21(19-22(25)26)20-24(2,3)4/h10-11,21H,5-9,12-20H2,1-4H3/b11-10-/t21-/m1/s1
InChI KeyJFAGPSOZZSTLRF-KUFMOJEASA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentAcyl carnitines
Alternative Parents
Substituents
  • Acyl-carnitine
  • Dicarboxylic acid or derivatives
  • Tetraalkylammonium salt
  • Quaternary ammonium salt
  • Carboxylic acid ester
  • Carboxylic acid salt
  • Carboxylic acid derivative
  • Carboxylic acid
  • Organic nitrogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic salt
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Physiological effect

Adverse health effect

Disposition

Biological location

Source

Route of exposure

Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility9.9e-06 g/LALOGPS
logP10(1.03) g/LALOGPS
logP10(1.67) g/LChemAxon
logS10(-7.7) g/LALOGPS
pKa (Strongest Acidic)4.22ChemAxon
pKa (Strongest Basic)-7.1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area66.43 ŲChemAxon
Rotatable Bond Count19ChemAxon
Refractivity138.19 m³·mol⁻¹ChemAxon
Polarizability48.83 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+208.75130932474
DeepCCS[M-H]-205.30130932474

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
9-HexadecenoylcarnitineCCCCCC\C=C/CCCCCCCC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C3018.0Standard polar33892256
9-HexadecenoylcarnitineCCCCCC\C=C/CCCCCCCC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C2419.9Standard non polar33892256
9-HexadecenoylcarnitineCCCCCC\C=C/CCCCCCCC(=O)O[C@H](CC([O-])=O)C[N+](C)(C)C2682.1Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - 9-Hexadecenoylcarnitine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 9-Hexadecenoylcarnitine 10V, Positive-QTOFsplash10-0002-0009000000-78c0db1f7d539241ca802021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 9-Hexadecenoylcarnitine 20V, Positive-QTOFsplash10-000j-9005000000-9978022cc1181ffa34522021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 9-Hexadecenoylcarnitine 40V, Positive-QTOFsplash10-000i-9000000000-e9262cbaff8cb4ad0ba62021-09-22Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue Locations
  • Placenta
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.03 +/- 0.01 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.010-0.060 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.03 +/- 0.01 uMChildren (1-13 years old)BothNormal details
BloodDetected and Quantified<0.08 uMAdolescent (13-18 years old)MaleNormal details
FecesDetected and Quantified0.29 +/- 0.16 nmol/g wet fecesAdult (>18 years old)Both
Normal
details
FecesDetected and Quantified0.25 +/- 0.11 nmol/g wet fecesAdult (>18 years old)Both
Normal
details
UrineDetected and Quantified0.0-0.03 umol/mmol creatinineNewborn (0-30 days old)BothNormal details
UrineDetected and Quantified0.01 +/- 0.01 umol/mmol creatinineNewborn (0-30 days old)FemaleNormal details
UrineDetected and Quantified0.01 +/- 0.0 umol/mmol creatinineNewborn (0-30 days old)MaleNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.04 +/- 0.01 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.04 +/- 0.01 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.04 +/- 0.01 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.041 +/- 0.012 uMChildren (1-13 years old)Both
Obesity
    • Metabolomics reve...
details
BloodDetected and Quantified0.044 +/- 0.013 uMChildren (1-13 years old)Both
Obesity
    • Metabolomics reve...
details
BloodDetected and Quantified0.04 +/- 0.01 uMChildren (1-13 years old)Both
Obese
details
BloodDetected and Quantified0.33 uMAdolescent (13-18 years old)Male
Glutaric aciduria II
details
BloodDetected and Quantified0.9 uMAdolescent (13-18 years old)MaleGlutaric aciduria II details
Associated Disorders and Diseases
Disease References
Glutaric aciduria II
  1. Prasad M, Hussain S: Glutaric aciduria type II presenting as myopathy and rhabdomyolysis in a teenager. J Child Neurol. 2015 Jan;30(1):96-9. doi: 10.1177/0883073813516676. Epub 2014 Jan 21. [PubMed:24453145 ]
Obesity
  1. Reinehr T, Wolters B, Knop C, Lass N, Hellmuth C, Harder U, Peissner W, Wahl S, Grallert H, Adamski J, Illig T, Prehn C, Yu Z, Wang-Sattler R, Koletzko B: Changes in the serum metabolite profile in obese children with weight loss. Eur J Nutr. 2015 Mar;54(2):173-81. doi: 10.1007/s00394-014-0698-8. Epub 2014 Apr 17. [PubMed:24740590 ]
  2. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Mittelstrass K, Polonikov A, Prehn C, Romisch-Margl W, Adamski J, Suhre K, Grallert H, Illig T, Wang-Sattler R, Reinehr T: Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts. 2012;5(5):660-70. doi: 10.1159/000343204. Epub 2012 Oct 4. [PubMed:23108202 ]
  3. Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID107447736
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Wahl S, Yu Z, Kleber M, Singmann P, Holzapfel C, He Y, Mittelstrass K, Polonikov A, Prehn C, Romisch-Margl W, Adamski J, Suhre K, Grallert H, Illig T, Wang-Sattler R, Reinehr T: Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts. 2012;5(5):660-70. doi: 10.1159/000343204. Epub 2012 Oct 4. [PubMed:23108202 ]
  6. Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
  7. FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
  8. Reuter SE, Evans AM: Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet. 2012 Sep 1;51(9):553-72. doi: 10.1007/BF03261931. [PubMed:22804748 ]
  9. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW: Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009 Mar;58(3):550-8. doi: 10.2337/db08-1078. Epub 2008 Dec 10. [PubMed:19073774 ]
  10. Schooneman MG, Vaz FM, Houten SM, Soeters MR: Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013 Jan;62(1):1-8. doi: 10.2337/db12-0466. [PubMed:23258903 ]
  11. Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M, Testani JM, Wang TS, Verma A, Samsky MD, Donahue MP, Ilkayeva OR, Bowles DE, Patel CB, Milano CA, Rogers JG, Felker GM, O'Connor CM, Shah SH, Kraus WE: Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical Circulatory Support. J Am Coll Cardiol. 2016 Jan 26;67(3):291-9. doi: 10.1016/j.jacc.2015.10.079. [PubMed:26796394 ]
  12. Kiykim E, Aktuglu Zeybek AC, Barut K, Zubarioglu T, Cansever MS, Alsancak S, Kasapcopur O: Screening of Free Carnitine and Acylcarnitine Status in Children With Familial Mediterranean Fever. Arch Rheumatol. 2016 Mar 10;31(2):133-138. doi: 10.5606/ArchRheumatol.2016.5696. eCollection 2016 Jun. [PubMed:29900937 ]
  13. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.