| Record Information |
|---|
| Version | 5.0 |
|---|
| Status | Detected and Quantified |
|---|
| Creation Date | 2012-05-18 14:04:03 UTC |
|---|
| Update Date | 2021-09-14 15:46:14 UTC |
|---|
| HMDB ID | HMDB0013713 |
|---|
| Secondary Accession Numbers | |
|---|
| Metabolite Identification |
|---|
| Common Name | N-Acetyltryptophan |
|---|
| Description | N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618 ). About 85% of all human proteins and 68% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686 ). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468 ). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468 ). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618 ). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986 ; PMID: 20613759 ). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557 ). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042 ). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728 ). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408 ). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936 ). |
|---|
| Structure | CC(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O InChI=1S/C13H14N2O3/c1-8(16)15-12(13(17)18)6-9-7-14-11-5-3-2-4-10(9)11/h2-5,7,12,14H,6H2,1H3,(H,15,16)(H,17,18)/t12-/m0/s1 |
|---|
| Synonyms | | Value | Source |
|---|
| (S)-N-Acetyltryptophan | HMDB | | Ac-Trp | HMDB | | Acetyl-L-Trp | HMDB | | Acetyl-L-tryptophan | HMDB | | Acetyltryptophan | HMDB | | N-Acetyl-L-tryptophan | HMDB | | Tryptophan, acetyl | HMDB | | N-Acetyltryptophan | MeSH | | (2S)-2-Acetamido-3-(1H-indol-3-yl)propanoic acid | HMDB | | (2S)-2-Acetamido-3-(1H-indol-3-yl)propionic acid | HMDB | | L-N-Acetyltryptophan | HMDB | | NAT | HMDB |
|
|---|
| Chemical Formula | C13H14N2O3 |
|---|
| Average Molecular Weight | 246.2619 |
|---|
| Monoisotopic Molecular Weight | 246.100442324 |
|---|
| IUPAC Name | (2S)-2-[(1-hydroxyethylidene)amino]-3-(1H-indol-3-yl)propanoic acid |
|---|
| Traditional Name | (2S)-2-[(1-hydroxyethylidene)amino]-3-(1H-indol-3-yl)propanoic acid |
|---|
| CAS Registry Number | 1218-34-4 |
|---|
| SMILES | CC(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O |
|---|
| InChI Identifier | InChI=1S/C13H14N2O3/c1-8(16)15-12(13(17)18)6-9-7-14-11-5-3-2-4-10(9)11/h2-5,7,12,14H,6H2,1H3,(H,15,16)(H,17,18)/t12-/m0/s1 |
|---|
| InChI Key | DZTHIGRZJZPRDV-LBPRGKRZSA-N |
|---|
| Chemical Taxonomy |
|---|
| Description | Belongs to the class of organic compounds known as n-acyl-l-alpha-amino acids. These are n-acylated alpha amino acids which have the L-configuration of the alpha-carbon atom. |
|---|
| Kingdom | Organic compounds |
|---|
| Super Class | Organic acids and derivatives |
|---|
| Class | Carboxylic acids and derivatives |
|---|
| Sub Class | Amino acids, peptides, and analogues |
|---|
| Direct Parent | N-acyl-L-alpha-amino acids |
|---|
| Alternative Parents | |
|---|
| Substituents | - N-acyl-l-alpha-amino acid
- Indolyl carboxylic acid derivative
- 3-alkylindole
- Indole
- Indole or derivatives
- Substituted pyrrole
- Benzenoid
- Acetamide
- Heteroaromatic compound
- Pyrrole
- Carboxamide group
- Secondary carboxylic acid amide
- Azacycle
- Organoheterocyclic compound
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Hydrocarbon derivative
- Organonitrogen compound
- Organooxygen compound
- Organopnictogen compound
- Organic oxygen compound
- Organic nitrogen compound
- Organic oxide
- Carbonyl group
- Aromatic heteropolycyclic compound
|
|---|
| Molecular Framework | Aromatic heteropolycyclic compounds |
|---|
| External Descriptors | |
|---|
| Ontology |
|---|
| Physiological effect | Not Available |
|---|
| Disposition | Not Available |
|---|
| Process | Not Available |
|---|
| Role | Not Available |
|---|
| Physical Properties |
|---|
| State | Solid |
|---|
| Experimental Molecular Properties | | Property | Value | Reference |
|---|
| Melting Point | 189.5 °C | Not Available | | Boiling Point | Not Available | Not Available | | Water Solubility | Not Available | Not Available | | LogP | Not Available | Not Available |
|
|---|
| Experimental Chromatographic Properties | Experimental Collision Cross Sections |
|---|
| Predicted Molecular Properties | |
|---|
| Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Retention Times Underivatized| Chromatographic Method | Retention Time | Reference |
|---|
| Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022. | 4.92 minutes | 32390414 | | Predicted by Siyang on May 30, 2022 | 10.7384 minutes | 33406817 | | Predicted by Siyang using ReTip algorithm on June 8, 2022 | 2.91 minutes | 32390414 | | AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid | 65.8 seconds | 40023050 | | Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid | 1607.2 seconds | 40023050 | | Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid | 271.1 seconds | 40023050 | | Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid | 113.1 seconds | 40023050 | | Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid | 165.7 seconds | 40023050 | | RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 136.6 seconds | 40023050 | | Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid | 305.7 seconds | 40023050 | | BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid | 327.9 seconds | 40023050 | | HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate) | 113.9 seconds | 40023050 | | UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid | 776.5 seconds | 40023050 | | BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid | 385.7 seconds | 40023050 | | UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid | 1184.0 seconds | 40023050 | | SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 290.1 seconds | 40023050 | | RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid | 247.4 seconds | 40023050 | | MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate | 354.7 seconds | 40023050 | | KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA | 173.5 seconds | 40023050 | | Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water | 132.6 seconds | 40023050 |
Predicted Kovats Retention IndicesUnderivatizedDerivatized| Derivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
|---|
| N-Acetyltryptophan,1TMS,isomer #1 | CC(=O)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2412.9 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,1TMS,isomer #2 | CC(=O)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2433.6 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,1TMS,isomer #3 | CC(=O)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O | 2462.1 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #1 | CC(=O)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2417.6 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #1 | CC(=O)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2382.1 | Standard non polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #1 | CC(=O)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2858.8 | Standard polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #2 | CC(=O)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2430.4 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #2 | CC(=O)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2358.6 | Standard non polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #2 | CC(=O)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2892.9 | Standard polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #3 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2412.2 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #3 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2429.4 | Standard non polar | 33892256 | | N-Acetyltryptophan,2TMS,isomer #3 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2937.4 | Standard polar | 33892256 | | N-Acetyltryptophan,3TMS,isomer #1 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2446.2 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,3TMS,isomer #1 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2439.7 | Standard non polar | 33892256 | | N-Acetyltryptophan,3TMS,isomer #1 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C)[Si](C)(C)C | 2673.5 | Standard polar | 33892256 | | N-Acetyltryptophan,1TBDMS,isomer #1 | CC(=O)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2678.1 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,1TBDMS,isomer #2 | CC(=O)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 2691.8 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,1TBDMS,isomer #3 | CC(=O)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O | 2692.4 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2912.5 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2838.9 | Standard non polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 3035.5 | Standard polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #2 | CC(=O)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2887.1 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #2 | CC(=O)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2786.0 | Standard non polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #2 | CC(=O)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 3045.2 | Standard polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #3 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 2876.7 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #3 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 2846.5 | Standard non polar | 33892256 | | N-Acetyltryptophan,2TBDMS,isomer #3 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 3077.8 | Standard polar | 33892256 | | N-Acetyltryptophan,3TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 3037.5 | Semi standard non polar | 33892256 | | N-Acetyltryptophan,3TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 3052.2 | Standard non polar | 33892256 | | N-Acetyltryptophan,3TBDMS,isomer #1 | CC(=O)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2967.1 | Standard polar | 33892256 |
|
|---|
| Spectra |
|---|
| GC-MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental GC-MS | GC-MS Spectrum - N-Acetyltryptophan GC-MS (3 TMS) | splash10-0udi-0390000000-bf959d5e1aab8cd794f3 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - N-Acetyltryptophan GC-MS (2 TMS) | splash10-0udi-1490000000-855cbd5624936bf3e2a1 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - N-Acetyltryptophan GC-MS (Non-derivatized) | splash10-0udi-0390000000-bf959d5e1aab8cd794f3 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Experimental GC-MS | GC-MS Spectrum - N-Acetyltryptophan GC-MS (Non-derivatized) | splash10-0udi-1490000000-855cbd5624936bf3e2a1 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyltryptophan GC-MS (Non-derivatized) - 70eV, Positive | splash10-0006-9550000000-f9186fd00d73708a5b17 | 2017-09-01 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyltryptophan GC-MS (2 TMS) - 70eV, Positive | splash10-00fr-9134000000-6e66aca41e26bf891fac | 2017-10-06 | Wishart Lab | View Spectrum | | Predicted GC-MS | Predicted GC-MS Spectrum - N-Acetyltryptophan GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS Spectra| Spectrum Type | Description | Splash Key | Deposition Date | Source | View |
|---|
| Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 30V, Positive-QTOF | splash10-05o4-0900000000-281ce0ad760f7fc94b1c | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 40V, Positive-QTOF | splash10-0159-0900000000-ce991768eab82fbdbf84 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 40V, Negative-QTOF | splash10-0603-9300000000-d07cb4937723d06edd48 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 30V, Negative-QTOF | splash10-0600-9300000000-2c409c01a91d64e800d7 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 10V, Negative-QTOF | splash10-0f6t-3190000000-1203a50dbf1ce05d0ee5 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 20V, Negative-QTOF | splash10-00di-9320000000-37f28cef4c5fd836b4f2 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 10V, Positive-QTOF | splash10-0pc9-0910000000-01c22859bbaf5182beff | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 0V, Positive-QTOF | splash10-0002-0790000000-5c560e793d549bcec815 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 30V, Positive-QTOF | splash10-00l6-3900000000-9fecaf5dedd815d7ac9b | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 0V, Positive-QTOF | splash10-0002-0690000000-87ef1c3dfb4287e7ad08 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 20V, Positive-QTOF | splash10-0a4s-0900000000-e88cf6e618c54b9a2d65 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 10V, Positive-QTOF | splash10-0k9i-0940000000-5ab9f2966f1604b51cb3 | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 10V, Positive-QTOF | splash10-0pc9-0920000000-204470b43912cb6712bc | 2021-09-20 | HMDB team, MONA | View Spectrum | | Experimental LC-MS/MS | LC-MS/MS Spectrum - N-Acetyltryptophan 30V, Positive-QTOF | splash10-00lu-0900000000-b1fa15ca34966d5c3ebc | 2021-09-20 | HMDB team, MONA | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 10V, Positive-QTOF | splash10-0f6t-0390000000-bee3f00676dbb20cddc3 | 2016-08-01 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 20V, Positive-QTOF | splash10-0pb9-0960000000-ffc38c580062532632f8 | 2016-08-01 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 40V, Positive-QTOF | splash10-001i-0900000000-5e314622f2cf80867542 | 2016-08-01 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 10V, Negative-QTOF | splash10-0002-1290000000-2f09bb4277a17573a1d4 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 20V, Negative-QTOF | splash10-0zfs-6890000000-cf484d59c551e83dba23 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 40V, Negative-QTOF | splash10-05mo-9500000000-49f44fec5a91f601a9b4 | 2016-08-03 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 10V, Negative-QTOF | splash10-0fr2-2790000000-64600864aeea894a8f16 | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 20V, Negative-QTOF | splash10-01b9-9600000000-fee48c2c347edd3e362e | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 40V, Negative-QTOF | splash10-014l-7900000000-baeeeec89ae0148886b5 | 2021-09-23 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 10V, Positive-QTOF | splash10-054t-0390000000-e119f5a3710d3fba6328 | 2021-09-24 | Wishart Lab | View Spectrum | | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - N-Acetyltryptophan 20V, Positive-QTOF | splash10-0a4u-0910000000-7fc91bffadf6c81532dc | 2021-09-24 | Wishart Lab | View Spectrum |
|
|---|
| Biological Properties |
|---|
| Cellular Locations | Not Available |
|---|
| Biospecimen Locations | |
|---|
| Tissue Locations | Not Available |
|---|
| Pathways | |
|---|
| Normal Concentrations |
|---|
| |
| Blood | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details | | Urine | Detected but not Quantified | Not Quantified | Not Available | Male | Normal | | details | | Urine | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Normal | | details |
|
|---|
| Abnormal Concentrations |
|---|
| |
| Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Colorectal Cancer | | details | | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Colorectal cancer | | details | | Feces | Detected but not Quantified | Not Quantified | Adult (>18 years old) | Both | Colorectal cancer | | details | | Urine | Detected and Quantified | 1.291 umol/mmol creatinine | Adult (>18 years old) | Female | Pregnancy | | details |
|
|---|
| Associated Disorders and Diseases |
|---|
| Disease References | | Colorectal cancer |
|---|
- Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
- Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
- Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
|
|
|---|
| Associated OMIM IDs | |
|---|
| External Links |
|---|
| DrugBank ID | Not Available |
|---|
| Phenol Explorer Compound ID | Not Available |
|---|
| FooDB ID | Not Available |
|---|
| KNApSAcK ID | Not Available |
|---|
| Chemspider ID | Not Available |
|---|
| KEGG Compound ID | Not Available |
|---|
| BioCyc ID | Not Available |
|---|
| BiGG ID | Not Available |
|---|
| Wikipedia Link | Not Available |
|---|
| METLIN ID | Not Available |
|---|
| PubChem Compound | 700653 |
|---|
| PDB ID | Not Available |
|---|
| ChEBI ID | 74640 |
|---|
| Food Biomarker Ontology | Not Available |
|---|
| VMH ID | Not Available |
|---|
| MarkerDB ID | Not Available |
|---|
| Good Scents ID | Not Available |
|---|
| References |
|---|
| Synthesis Reference | Not Available |
|---|
| Material Safety Data Sheet (MSDS) | Not Available |
|---|
| General References | - Sass JO, Mohr V, Olbrich H, Engelke U, Horvath J, Fliegauf M, Loges NT, Schweitzer-Krantz S, Moebus R, Weiler P, Kispert A, Superti-Furga A, Wevers RA, Omran H: Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism. Am J Hum Genet. 2006 Mar;78(3):401-9. Epub 2006 Jan 18. [PubMed:16465618 ]
- Fang L, Parti R, Hu P: Characterization of N-acetyltryptophan degradation products in concentrated human serum albumin solutions and development of an automated high performance liquid chromatography-mass spectrometry method for their quantitation. J Chromatogr A. 2011 Oct 14;1218(41):7316-24. doi: 10.1016/j.chroma.2011.08.044. Epub 2011 Aug 18. [PubMed:21903216 ]
- Pavlova T, Vidova V, Bienertova-Vasku J, Janku P, Almasi M, Klanova J, Spacil Z: Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal Chim Acta. 2017 Sep 22;987:72-80. doi: 10.1016/j.aca.2017.08.022. Epub 2017 Aug 26. [PubMed:28916042 ]
- Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One. 2015 Aug 28;10(8):e0135657. doi: 10.1371/journal.pone.0135657. eCollection 2015. [PubMed:26317986 ]
- Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T: NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet. 2011 Jul;7(7):e1002169. doi: 10.1371/journal.pgen.1002169. Epub 2011 Jul 7. [PubMed:21750686 ]
- Ree R, Varland S, Arnesen T: Spotlight on protein N-terminal acetylation. Exp Mol Med. 2018 Jul 27;50(7):1-13. doi: 10.1038/s12276-018-0116-z. [PubMed:30054468 ]
- Toyohara T, Akiyama Y, Suzuki T, Takeuchi Y, Mishima E, Tanemoto M, Momose A, Toki N, Sato H, Nakayama M, Hozawa A, Tsuji I, Ito S, Soga T, Abe T: Metabolomic profiling of uremic solutes in CKD patients. Hypertens Res. 2010 Sep;33(9):944-52. doi: 10.1038/hr.2010.113. Epub 2010 Jul 8. [PubMed:20613759 ]
- Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J: A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008 May;19(5):863-70. doi: 10.1681/ASN.2007121377. Epub 2008 Feb 20. [PubMed:18287557 ]
- Li W, Fotinos A, Wu Q, Chen Y, Zhu Y, Baranov S, Tu Y, Zhou EW, Sinha B, Kristal BS, Wang X: N-acetyl-L-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model. Neurobiol Dis. 2015 Aug;80:93-103. doi: 10.1016/j.nbd.2015.05.002. Epub 2015 May 16. [PubMed:25986728 ]
- Ameliorate JL, Ghabriel MN, Vink R: Magnesium enhances the beneficial effects of NK1 antagonist administration on blood-brain barrier permeability and motor outcome after traumatic brain injury. Magnes Res. 2017 Aug 1;30(3):88-97. doi: 10.1684/mrh.2017.0427. [PubMed:29256408 ]
- Wang J, Yu S, Li J, Li H, Jiang H, Xiao P, Pan Y, Zheng J, Yu L, Jiang J: Protective role of N-acetyl-l-tryptophan against hepatic ischemia-reperfusion injury via the RIP2/caspase-1/IL-1beta signaling pathway. Pharm Biol. 2019 Dec;57(1):385-391. doi: 10.1080/13880209.2019.1617750. [PubMed:31184936 ]
|
|---|