Hmdb loader
Survey
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version5.0
StatusDetected but not Quantified
Creation Date2012-09-06 15:16:51 UTC
Update Date2022-03-07 02:51:50 UTC
HMDB IDHMDB0015044
Secondary Accession Numbers
  • HMDB15044
Metabolite Identification
Common NameQuinidine
DescriptionQuinidine, also known as chinidin or (8R,9S)-quinidine, belongs to the class of organic compounds known as cinchona alkaloids. These are alkaloids structurally characterized by the presence of the cinchonan skeleton, which consists of a quinoline linked to an azabicyclo[2.2.2]octane moiety. A cinchona alkaloid consisting of cinchonine with the hydrogen at the 6-position of the quinoline ring substituted by methoxy. Quinidine is a drug which is used for the treatment of ventricular pre-excitation and cardiac dysrhythmias. Quinidine is a very strong basic compound (based on its pKa). In humans, quinidine is involved in quinidine action pathway.
Structure
Data?1582753251
Synonyms
ValueSource
(+)-QuinidineChEBI
(8R,9S)-QuinidineChEBI
(R)-(6-Methoxyquinolin-4-yl)((3S,4R,7S)-3-vinylquinuclidin-7-yl)methanolChEBI
(S)-(6-Methoxy-quinolin-4-yl)-((2R,5R)-5-vinyl-1-aza-bicyclo[2.2.2]oct-2-yl)-methanolChEBI
(S)-(6-Methoxyquinolin-4-yl)((2R,5R)-5-vinylquinuclidin-2-yl)methanolChEBI
6-Methoxy-alpha-(5-vinyl-2-quinuclidinyl)-4-quinolinemethanolChEBI
alpha-(6-Methoxy-4-quinolyl)-5-vinyl-2-quinuclidinemethanolChEBI
beta-QuinineChEBI
ChinidinChEBI
ChinidinumChEBI
CIN-quinChEBI
ConchininChEBI
ConquinineChEBI
KinidinChEBI
PitayineChEBI
QuinidinaChEBI
6-Methoxy-a-(5-vinyl-2-quinuclidinyl)-4-quinolinemethanolGenerator
6-Methoxy-α-(5-vinyl-2-quinuclidinyl)-4-quinolinemethanolGenerator
a-(6-Methoxy-4-quinolyl)-5-vinyl-2-quinuclidinemethanolGenerator
Α-(6-methoxy-4-quinolyl)-5-vinyl-2-quinuclidinemethanolGenerator
b-QuinineGenerator
Β-quinineGenerator
Quinidine sulfateHMDB
QuincardineHMDB
Sulfate, quinidineHMDB
Apo-quinidineHMDB
Apotex brand OF quinidine sulfateHMDB
Fawns and mcallan brand OF quinidine sulfateHMDB
Apo quinidineHMDB
QuinidexHMDB
QuinoraHMDB
Robins brand OF quinidine sulfateHMDB
AdaquinHMDB
Nelson brand OF quinidine sulfateHMDB
Chemical FormulaC20H24N2O2
Average Molecular Weight324.4168
Monoisotopic Molecular Weight324.183778022
IUPAC Name(S)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl](6-methoxyquinolin-4-yl)methanol
Traditional Namequinidine
CAS Registry Number56-54-2
SMILES
[H][C@@]12CCN(C[C@@H]1C=C)[C@]([H])(C2)[C@@H](O)C1=C2C=C(OC)C=CC2=NC=C1
InChI Identifier
InChI=1S/C20H24N2O2/c1-3-13-12-22-9-7-14(13)10-19(22)20(23)16-6-8-21-18-5-4-15(24-2)11-17(16)18/h3-6,8,11,13-14,19-20,23H,1,7,9-10,12H2,2H3/t13-,14-,19+,20-/m0/s1
InChI KeyLOUPRKONTZGTKE-LHHVKLHASA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as cinchona alkaloids. These are alkaloids structurally characterized by the presence of the cinchonan skeleton, which consists of a quinoline linked to an azabicyclo[2.2.2]Octane moiety.
KingdomOrganic compounds
Super ClassAlkaloids and derivatives
ClassCinchona alkaloids
Sub ClassNot Available
Direct ParentCinchona alkaloids
Alternative Parents
Substituents
  • Cinchonan-skeleton
  • 4-quinolinemethanol
  • Quinoline
  • Anisole
  • Quinuclidine
  • Alkyl aryl ether
  • Aralkylamine
  • Piperidine
  • Pyridine
  • Benzenoid
  • Heteroaromatic compound
  • 1,2-aminoalcohol
  • Tertiary aliphatic amine
  • Tertiary amine
  • Secondary alcohol
  • Ether
  • Azacycle
  • Organoheterocyclic compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Organopnictogen compound
  • Amine
  • Alcohol
  • Organic oxygen compound
  • Aromatic alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Process
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point174 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.33 g/LNot Available
LogP2.6Not Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M+H]+CBM175.830932474
Predicted Molecular Properties
PropertyValueSource
Water Solubility0.33 g/LALOGPS
logP2.82ALOGPS
logP2.51ChemAxon
logS-3ALOGPS
pKa (Strongest Acidic)13.89ChemAxon
pKa (Strongest Basic)9.05ChemAxon
Physiological Charge1ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area45.59 ŲChemAxon
Rotatable Bond Count4ChemAxon
Refractivity94.69 m³·mol⁻¹ChemAxon
Polarizability35.82 ųChemAxon
Number of Rings4ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+177.78331661259
DarkChem[M-H]-175.04831661259
DeepCCS[M-2H]-212.73230932474
DeepCCS[M+Na]+188.14530932474
AllCCS[M+H]+181.232859911
AllCCS[M+H-H2O]+178.032859911
AllCCS[M+NH4]+184.232859911
AllCCS[M+Na]+185.132859911
AllCCS[M-H]-186.332859911
AllCCS[M+Na-2H]-186.332859911
AllCCS[M+HCOO]-186.532859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
Quinidine[H][C@@]12CCN(C[C@@H]1C=C)[C@]([H])(C2)[C@@H](O)C1=C2C=C(OC)C=CC2=NC=C13358.5Standard polar33892256
Quinidine[H][C@@]12CCN(C[C@@H]1C=C)[C@]([H])(C2)[C@@H](O)C1=C2C=C(OC)C=CC2=NC=C12735.5Standard non polar33892256
Quinidine[H][C@@]12CCN(C[C@@H]1C=C)[C@]([H])(C2)[C@@H](O)C1=C2C=C(OC)C=CC2=NC=C12874.0Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
Quinidine,1TMS,isomer #1C=C[C@H]1CN2CC[C@H]1C[C@@H]2[C@@H](O[Si](C)(C)C)C1=CC=NC2=CC=C(OC)C=C122630.1Semi standard non polar33892256
Quinidine,1TBDMS,isomer #1C=C[C@H]1CN2CC[C@H]1C[C@@H]2[C@@H](O[Si](C)(C)C(C)(C)C)C1=CC=NC2=CC=C(OC)C=C122880.0Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - Quinidine GC-MS (Non-derivatized) - 70eV, Positivesplash10-0a4r-1901000000-90466d795da1be8cafae2017-09-01Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Quinidine GC-MS (1 TMS) - 70eV, Positivesplash10-05g0-7947000000-ee233460f7e7fbb00ca72017-10-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Quinidine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Quinidine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine LC-ESI-qTof , Positive-QTOFsplash10-02ta-3900000000-46a157d2899290cbf4ab2017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine LC-ESI-qTof , Positive-QTOFsplash10-0200-2952000000-2777ab3374ec2b052b2e2017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine Linear Ion Trap , negative-QTOFsplash10-0bt9-0908000000-f7ff24907014d88504722017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine Linear Ion Trap , negative-QTOFsplash10-08fr-0907000000-f6d31042d549da6bcfd02017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine Linear Ion Trap , negative-QTOFsplash10-0bt9-0709000000-2c0e665e2c3031c8e5172017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine Linear Ion Trap , negative-QTOFsplash10-00di-0009133000-a893d9e0e441c597fac32017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine Linear Ion Trap , negative-QTOFsplash10-00di-0009001000-0a0220fd8eeb9e62bc202017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine Linear Ion Trap , positive-QTOFsplash10-0a4i-0469000000-3679f13f09481b3563c82017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine Linear Ion Trap , positive-QTOFsplash10-0a4i-0459000000-60c4a39356a4afeef2d22017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine Linear Ion Trap , positive-QTOFsplash10-0a4i-0239000000-644b48bb63dd87dac2312017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine , positive-QTOFsplash10-03di-0910000000-b0045fccdbe90e5989122017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine , positive-QTOFsplash10-004i-0229000000-f88b510f13aab6a2bb442017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine , positive-QTOFsplash10-02ta-3900000000-46a157d2899290cbf4ab2017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine , positive-QTOFsplash10-0200-2952000000-2777ab3374ec2b052b2e2017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine 40V, Positive-QTOFsplash10-00ai-6930000000-44317fd6318c96581c842021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine 10V, Positive-QTOFsplash10-004i-0009000000-fe19371b962ad06144312021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Quinidine 20V, Positive-QTOFsplash10-004i-0109000000-887063f0b5addd8d47c02021-09-20HMDB team, MONAView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Quinidine 10V, Positive-QTOFsplash10-0a6r-0019000000-0f42379f2989cf204f722016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Quinidine 20V, Positive-QTOFsplash10-0a4r-0729000000-5a0d8aa890e6c737bf452016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Quinidine 40V, Positive-QTOFsplash10-0079-0920000000-70e4fed1a61c38cf53fb2016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Quinidine 10V, Negative-QTOFsplash10-00di-0109000000-e84ce15e838ff8ac33f62016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Quinidine 20V, Negative-QTOFsplash10-05fr-0229000000-b87ca7a53d952af7505e2016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Quinidine 40V, Negative-QTOFsplash10-0540-0920000000-12d8977ce43e168f84532016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Quinidine 10V, Positive-QTOFsplash10-004i-0009000000-2125f5c1412244f91fb32021-10-11Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Quinidine 20V, Positive-QTOFsplash10-004i-0209000000-138a21908ae52680c7c52021-10-11Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00908 details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00908 details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
DrugBank IDDB00908
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID389880
KEGG Compound IDC06527
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkQuinidine
METLIN IDNot Available
PubChem Compound441074
PDB IDNot Available
ChEBI ID28593
Food Biomarker OntologyNot Available
VMH IDM02821
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Only showing the first 10 proteins. There are 21 proteins in total.

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Ludwig E, Schmid J, Beschke K, Ebner T: Activation of human cytochrome P-450 3A4-catalyzed meloxicam 5'-methylhydroxylation by quinidine and hydroquinidine in vitro. J Pharmacol Exp Ther. 1999 Jul;290(1):1-8. [PubMed:10381752 ]
  2. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
  3. Ekins S, Bravi G, Wikel JH, Wrighton SA: Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999 Oct;291(1):424-33. [PubMed:10490933 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. This enzyme contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan.
Gene Name:
CYP2C9
Uniprot ID:
P11712
Molecular weight:
55627.365
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Metabolizes several precarcinogens, drugs, and solvents to reactive metabolites. Inactivates a number of drugs and xenobiotics and also bioactivates many xenobiotic substrates to their hepatotoxic or carcinogenic forms.
Gene Name:
CYP2E1
Uniprot ID:
P05181
Molecular weight:
56848.42
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,4-cineole 2-exo-monooxygenase.
Gene Name:
CYP2B6
Uniprot ID:
P20813
Molecular weight:
56277.81
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP1A1
Uniprot ID:
P04798
Molecular weight:
58164.815
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Gene Name:
CYP3A7
Uniprot ID:
P24462
Molecular weight:
57525.03
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Most active in catalyzing 2-hydroxylation. Caffeine is metabolized primarily by cytochrome CYP1A2 in the liver through an initial N3-demethylation. Also acts in the metabolism of aflatoxin B1 and acetaminophen. Participates in the bioactivation of carcinogenic aromatic and heterocyclic amines. Catalizes the N-hydroxylation of heterocyclic amines and the O-deethylation of phenacetin.
Gene Name:
CYP1A2
Uniprot ID:
P05177
Molecular weight:
58406.915
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular weight:
55824.275
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in ion channel activity
Specific function:
Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel. Channel properties are modulated by cAMP and subunit assembly. Mediates the rapidly activating component of the delayed rectifying potassium current in heart (IKr). Isoform 3 has no channel activity by itself, but modulates channel characteristics when associated with isoform 1
Gene Name:
KCNH2
Uniprot ID:
Q12809
Molecular weight:
126653.5
References
  1. Po SS, Wang DW, Yang IC, Johnson JP Jr, Nie L, Bennett PB: Modulation of HERG potassium channels by extracellular magnesium and quinidine. J Cardiovasc Pharmacol. 1999 Feb;33(2):181-5. [PubMed:10028924 ]
  2. Dong DL, Li Z, Wang HZ, Du ZM, Song WH, Yang BF: Acidification alters antiarrhythmic drug blockade of the ether-a-go-go-related Gene (HERG) Channels. Basic Clin Pharmacol Toxicol. 2004 May;94(5):209-12. [PubMed:15125690 ]
  3. Wolpert C, Schimpf R, Giustetto C, Antzelevitch C, Cordeiro J, Dumaine R, Brugada R, Hong K, Bauersfeld U, Gaita F, Borggrefe M: Further insights into the effect of quinidine in short QT syndrome caused by a mutation in HERG. J Cardiovasc Electrophysiol. 2005 Jan;16(1):54-8. [PubMed:15673388 ]
  4. Lin C, Ke X, Cvetanovic I, Ranade V, Somberg J: The influence of extracellular acidosis on the effect of IKr blockers. J Cardiovasc Pharmacol Ther. 2005 Mar;10(1):67-76. [PubMed:15821840 ]
  5. Lin C, Cvetanovic I, Ke X, Ranade V, Somberg J: A mechanism for the potential proarrhythmic effect of acidosis, bradycardia, and hypokalemia on the blockade of human ether-a-go-go-related gene (HERG) channels. Am J Ther. 2005 Jul-Aug;12(4):328-36. [PubMed:16041196 ]
  6. Guerard NC, Traebert M, Suter W, Dumotier BM: Selective block of IKs plays a significant role in MAP triangulation induced by IKr block in isolated rabbit heart. J Pharmacol Toxicol Methods. 2008 Jul-Aug;58(1):32-40. doi: 10.1016/j.vascn.2008.05.129. Epub 2008 Jun 8. [PubMed:18582585 ]

Transporters

General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as pravastatin, taurocholate, methotrexate, dehydroepiandrosterone sulfate, 17-beta-glucuronosyl estradiol, estrone sulfate, prostaglandin E2, thromboxane B2, leukotriene C3, leukotriene E4, thyroxine and triiodothyronine. May play an important role in the clearance of bile acids and organic anions from the liver
Gene Name:
SLCO1B1
Uniprot ID:
Q9Y6L6
Molecular weight:
76448.0
References
  1. Nozawa T, Tamai I, Sai Y, Nezu J, Tsuji A: Contribution of organic anion transporting polypeptide OATP-C to hepatic elimination of the opioid pentapeptide analogue [D-Ala2, D-Leu5]-enkephalin. J Pharm Pharmacol. 2003 Jul;55(7):1013-20. [PubMed:12906759 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Sodium-ion dependent, high affinity carnitine transporter. Involved in the active cellular uptake of carnitine. Transports one sodium ion with one molecule of carnitine. Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Also relative uptake activity ratio of carnitine to TEA is 11.3
Gene Name:
SLC22A5
Uniprot ID:
O76082
Molecular weight:
62751.1
References
  1. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, Shimane M, Tsuji A: Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999 Nov;291(2):778-84. [PubMed:10525100 ]
  2. Ohashi R, Tamai I, Nezu Ji J, Nikaido H, Hashimoto N, Oku A, Sai Y, Shimane M, Tsuji A: Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001 Feb;59(2):358-66. [PubMed:11160873 ]
General function:
Involved in ATP binding
Specific function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular weight:
174205.6
References
  1. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):773-9. [PubMed:12134946 ]
General function:
Involved in ATP binding
Specific function:
Involved in the ATP-dependent secretion of bile salts into the canaliculus of hepatocytes
Gene Name:
ABCB11
Uniprot ID:
O95342
Molecular weight:
146405.8
References
  1. Wang EJ, Casciano CN, Clement RP, Johnson WW: Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharm Res. 2003 Apr;20(4):537-44. [PubMed:12739759 ]
General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR, Kim RB: Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 2000 Jun;28(6):655-60. [PubMed:10820137 ]
  2. Gao J, Murase O, Schowen RL, Aube J, Borchardt RT: A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001 Feb;18(2):171-6. [PubMed:11405287 ]
  3. Wang EJ, Casciano CN, Clement RP, Johnson WW: Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001 Nov 30;289(2):580-5. [PubMed:11716514 ]
  4. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):765-72. [PubMed:12134945 ]
  5. Horie K, Tang F, Borchardt RT: Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003 Feb;20(2):161-8. [PubMed:12636153 ]
  6. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J: Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003 Apr 24;46(9):1716-25. [PubMed:12699389 ]
  7. Weiss J, Dormann SM, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE: Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003 Apr;305(1):197-204. [PubMed:12649369 ]
  8. Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, Komano T, Hori R: Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992 Nov;263(2):840-5. [PubMed:1359120 ]
  9. Ito T, Yano I, Tanaka K, Inui KI: Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1997 Aug;282(2):955-60. [PubMed:9262363 ]
  10. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, Wilkinson GR: The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998 Jan 15;101(2):289-94. [PubMed:9435299 ]
  11. Nagy H, Goda K, Fenyvesi F, Bacso Z, Szilasi M, Kappelmayer J, Lustyik G, Cianfriglia M, Szabo G Jr: Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004 Mar 19;315(4):942-9. [PubMed:14985103 ]
  12. Jutabha P, Wempe MF, Anzai N, Otomo J, Kadota T, Endou H: Xenopus laevis oocytes expressing human P-glycoprotein: probing trans- and cis-inhibitory effects on [3H]vinblastine and [3H]digoxin efflux. Pharmacol Res. 2010 Jan;61(1):76-84. doi: 10.1016/j.phrs.2009.07.002. Epub 2009 Jul 21. [PubMed:19631272 ]
  13. Dahan A, Amidon GL: Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G371-7. doi: 10.1152/ajpgi.00102.2009. Epub 2009 Jun 18. [PubMed:19541926 ]
  14. Dahan A, Sabit H, Amidon GL: The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport. AAPS J. 2009 Jun;11(2):205-13. doi: 10.1208/s12248-009-9092-5. Epub 2009 Mar 25. [PubMed:19319690 ]
  15. Smith BJ, Doran AC, McLean S, Tingley FD 3rd, O'Neill BT, Kajiji SM: P-glycoprotein efflux at the blood-brain barrier mediates differences in brain disposition and pharmacodynamics between two structurally related neurokinin-1 receptor antagonists. J Pharmacol Exp Ther. 2001 Sep;298(3):1252-9. [PubMed:11504828 ]
  16. Adachi Y, Suzuki H, Sugiyama Y: Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res. 2001 Dec;18(12):1660-8. [PubMed:11785684 ]
  17. Neuhoff S, Ungell AL, Zamora I, Artursson P: pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: implications for drug-drug interactions. Pharm Res. 2003 Aug;20(8):1141-8. [PubMed:12948010 ]
  18. Troutman MD, Thakker DR: Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003 Aug;20(8):1210-24. [PubMed:12948019 ]
  19. Faassen F, Vogel G, Spanings H, Vromans H: Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm. 2003 Sep 16;263(1-2):113-22. [PubMed:12954186 ]
  20. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM: Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine [seecomments]. Circulation. 1999 Feb 2;99(4):552-7. [PubMed:9927403 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Sodium-ion dependent, low affinity carnitine transporter. Probably transports one sodium ion with one molecule of carnitine. Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Relative uptake activity ratio of carnitine to TEA is 1.78. A key substrate of this transporter seems to be ergothioneine (ET)
Gene Name:
SLC22A4
Uniprot ID:
Q9H015
Molecular weight:
62154.5
References
  1. Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, Sai Y, Tsuji A: Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999 May;289(2):768-73. [PubMed:10215651 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Translocates a broad array of organic cations with various structures and molecular weights including the model compounds 1-methyl-4-phenylpyridinium (MPP), tetraethylammonium (TEA), N-1-methylnicotinamide (NMN), 4-(4-(dimethylamino)styryl)- N-methylpyridinium (ASP), the endogenous compounds choline, guanidine, histamine, epinephrine, adrenaline, noradrenaline and dopamine, and the drugs quinine, and metformin. The transport of organic cations is inhibited by a broad array of compounds like tetramethylammonium (TMA), cocaine, lidocaine, NMDA receptor antagonists, atropine, prazosin, cimetidine, TEA and NMN, guanidine, cimetidine, choline, procainamide, quinine, tetrabutylammonium, and tetrapentylammonium. Translocates organic cations in an electrogenic and pH-independent manner. Translocates organic cations across the plasma membrane in both directions. Transports the polyamines spermine and spermidine. Transports pramipexole across the basolateral membrane of the proximal tubular epithelial cells. The choline transport is activated by MMTS. Regulated by various intracellular signaling pathways including inhibition by protein kinase A activation, and endogenously activation by the calmodulin complex, the calmodulin- dependent kinase II and LCK tyrosine kinase
Gene Name:
SLC22A1
Uniprot ID:
O15245
Molecular weight:
61187.4
References
  1. van Montfoort JE, Muller M, Groothuis GM, Meijer DK, Koepsell H, Meier PJ: Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001 Jul;298(1):110-5. [PubMed:11408531 ]
  2. Bednarczyk D, Ekins S, Wikel JH, Wright SH: Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003 Mar;63(3):489-98. [PubMed:12606755 ]
  3. Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM: Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997 Jun;51(6):913-21. [PubMed:9187257 ]
  4. Zhang L, Schaner ME, Giacomini KM: Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther. 1998 Jul;286(1):354-61. [PubMed:9655880 ]
  5. Zhang L, Gorset W, Dresser MJ, Giacomini KM: The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1. J Pharmacol Exp Ther. 1999 Mar;288(3):1192-8. [PubMed:10027858 ]
  6. Sandhu P, Lee W, Xu X, Leake BF, Yamazaki M, Stone JA, Lin JH, Pearson PG, Kim RB: Hepatic uptake of the novel antifungal agent caspofungin. Drug Metab Dispos. 2005 May;33(5):676-82. Epub 2005 Feb 16. [PubMed:15716364 ]
  7. Sinclair CJ, Chi KD, Subramanian V, Ward KL, Green RM: Functional expression of a high affinity mammalian hepatic choline/organic cation transporter. J Lipid Res. 2000 Nov;41(11):1841-8. [PubMed:11060354 ]
  8. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H: Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol. 2001 Sep;281(3):F454-68. [PubMed:11502595 ]
  9. Urakami Y, Okuda M, Masuda S, Saito H, Inui KI: Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998 Nov;287(2):800-5. [PubMed:9808712 ]
  10. Martel F, Vetter T, Russ H, Grundemann D, Azevedo I, Koepsell H, Schomig E: Transport of small organic cations in the rat liver. The role of the organic cation transporter OCT1. Naunyn Schmiedebergs Arch Pharmacol. 1996 Aug-Sep;354(3):320-6. [PubMed:8878062 ]
  11. Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H: Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett. 1996 Oct 21;395(2-3):153-6. [PubMed:8898084 ]
  12. Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H: Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem. 1996 Dec 20;271(51):32599-604. [PubMed:8955087 ]
General function:
Involved in transporter activity
Specific function:
Mediates the Na(+)-independent transport of organic anions such as sulfobromophthalein (BSP) and conjugated (taurocholate) and unconjugated (cholate) bile acids
Gene Name:
SLCO1A2
Uniprot ID:
P46721
Molecular weight:
74144.1
References
  1. van Montfoort JE, Muller M, Groothuis GM, Meijer DK, Koepsell H, Meier PJ: Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J Pharmacol Exp Ther. 2001 Jul;298(1):110-5. [PubMed:11408531 ]
  2. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB: OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999 Aug;27(8):866-71. [PubMed:10421612 ]
  3. Shitara Y, Sugiyama D, Kusuhara H, Kato Y, Abe T, Meier PJ, Itoh T, Sugiyama Y: Comparative inhibitory effects of different compounds on rat oatpl (slc21a1)- and Oatp2 (Slc21a5)-mediated transport. Pharm Res. 2002 Feb;19(2):147-53. [PubMed:11883641 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Mediates tubular uptake of organic compounds from circulation. Mediates the influx of agmatine, dopamine, noradrenaline (norepinephrine), serotonin, choline, famotidine, ranitidine, histamin, creatinine, amantadine, memantine, acriflavine, 4-[4-(dimethylamino)-styryl]-N-methylpyridinium ASP, amiloride, metformin, N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, cisplatin and oxaliplatin. Cisplatin may develop a nephrotoxic action. Transport of creatinine is inhibited by fluoroquinolones such as DX-619 and LVFX. This transporter is a major determinant of the anticancer activity of oxaliplatin and may contribute to antitumor specificity
Gene Name:
SLC22A2
Uniprot ID:
O15244
Molecular weight:
62564.0
References
  1. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K: cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002 Jul;13(7):1703-10. [PubMed:12089365 ]
  2. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H: Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol. 2001 Sep;281(3):F454-68. [PubMed:11502595 ]
  3. Urakami Y, Okuda M, Masuda S, Saito H, Inui KI: Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998 Nov;287(2):800-5. [PubMed:9808712 ]

Only showing the first 10 proteins. There are 21 proteins in total.