Hmdb loader
Show more...Show more...Show more...Show more...Show more...Show more...
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2005-11-16 15:48:42 UTC
Update Date2021-09-14 15:44:40 UTC
HMDB IDHMDB0000283
Secondary Accession Numbers
  • HMDB0012194
  • HMDB00283
  • HMDB12194
Metabolite Identification
Common NameD-Ribose
DescriptionD-Ribose, commonly referred to as simply ribose, is a five-carbon sugar found in all living cells. Ribose is not an essential nutrient because it can be synthesized by almost every tissue in the body from other substances, such as glucose. It is vital for life as a component of DNA, RNA, ATP, ADP, and AMP. In nature, small amounts of ribose can be found in ripe fruits and vegetables. Brewer's yeast, which has a high concentration of RNA, is another rich source of ribose. D-ribose is also a component of many so-called energy drinks and anti-ageing products available on the market today. Ribose is a structural component of ATP, which is the primary energy source for exercising muscle. The adenosine component is an adenine base attached to the five-carbon sugar ribose. ATP provides energy to working muscles by releasing a phosphate group, hence becoming ADP, which in turn may release a phosphate group, then becoming AMP. During intense muscular activity, the total amount of ATP available is quickly depleted. In an effort to correct this imbalance, AMP is broken down in the muscle and secreted from the cell. Once the breakdown products of AMP are released from the cell, the energy potential (TAN pool) of the muscle is reduced and ATP must then be reformed using ribose. Ribose helps restore the level of adenine nucleotides by bypassing the rate-limiting step in the de novo (oxidative pentose phosphate) pathway, which regenerates phosphoribosyl pyrophosphate (PRPP), the essential precursor for ATP. If ribose is not readily available to a cell, glucose may be converted to ribose. Ribose supplementation has been shown to increase the rate of ATP resynthesis following intense exercise. The use of ribose in men with severe coronary artery disease resulted in improved exercise tolerance. Hence, there is interest in the potential of ribose supplements to boost muscular performance in athletic activities (PMID: 17618002 , Curr Sports Med Rep. 2007 Jul;6(4):254-7.).
Structure
Thumb
Synonyms
ValueSource
(3R,4S,5R)-5-(Hydroxymethyl)tetrahydrofuran-2,3,4-triolChEBI
RiboseChEBI
D-RibofuranosideHMDB
D-​RibofuranoseHMDB
RibofuranosideHMDB
RibofuranoseHMDB
Chemical FormulaC5H10O5
Average Molecular Weight150.1299
Monoisotopic Molecular Weight150.05282343
IUPAC Name(3R,4S,5R)-5-(hydroxymethyl)oxolane-2,3,4-triol
Traditional NameD-ribofuranoside
CAS Registry Number613-83-2
SMILES
OC[C@H]1OC(O)[C@H](O)[C@@H]1O
InChI Identifier
InChI=1S/C5H10O5/c6-1-2-3(7)4(8)5(9)10-2/h2-9H,1H2/t2-,3-,4-,5?/m1/s1
InChI KeyHMFHBZSHGGEWLO-SOOFDHNKSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as pentoses. These are monosaccharides in which the carbohydrate moiety contains five carbon atoms.
KingdomOrganic compounds
Super ClassOrganic oxygen compounds
ClassOrganooxygen compounds
Sub ClassCarbohydrates and carbohydrate conjugates
Direct ParentPentoses
Alternative Parents
Substituents
  • Pentose monosaccharide
  • Tetrahydrofuran
  • Secondary alcohol
  • Hemiacetal
  • Oxacycle
  • Organoheterocyclic compound
  • Polyol
  • Hydrocarbon derivative
  • Primary alcohol
  • Alcohol
  • Aliphatic heteromonocyclic compound
Molecular FrameworkAliphatic heteromonocyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point95 °CNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogP-2.32HANSCH,C ET AL. (1995)
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
Predicted Chromatographic Properties
Spectra
Biological Properties
Cellular Locations
  • Extracellular
Biospecimen Locations
  • Blood
  • Cerebrospinal Fluid (CSF)
  • Feces
  • Saliva
  • Urine
Tissue Locations
  • Adrenal Gland
  • Epidermis
  • Fibroblasts
  • Kidney
  • Lung
  • Neuron
  • Pancreas
  • Placenta
  • Platelet
  • Prostate
  • Skeletal Muscle
  • Spleen
  • Testis
Pathways
Normal Concentrations
Abnormal Concentrations
Associated Disorders and Diseases
Disease References
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Ribose-5-phosphate isomerase deficiency
  1. Huck JH, Verhoeven NM, Struys EA, Salomons GS, Jakobs C, van der Knaap MS: Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet. 2004 Apr;74(4):745-51. Epub 2004 Feb 25. [PubMed:14988808 ]
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Associated OMIM IDs
  • 114500 (Colorectal cancer)
  • 608611 (Ribose-5-phosphate isomerase deficiency)
  • 610247 (Eosinophilic esophagitis)
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB031292
KNApSAcK IDC00034198
Chemspider ID5575
KEGG Compound IDC00121
BioCyc IDNot Available
BiGG ID33936
Wikipedia LinkRibose
METLIN ID313
PubChem Compound5779
PDB IDNot Available
ChEBI ID47013
Food Biomarker OntologyNot Available
VMH IDRIB_D
MarkerDB IDMDB00000133
Good Scents IDNot Available
References
Synthesis ReferencePark, Yong-Cheol; Choi, Jin-Ho; Bennett, George N.; Seo, Jin-Ho. Characterization of D-ribose biosynthesis in Bacillus subtilis JY200 deficient in transketolase gene. Journal of Biotechnology (2006), 121(4), 508-516.
Material Safety Data Sheet (MSDS)Not Available
General References

Enzymes

General function:
Involved in ribokinase activity
Specific function:
Not Available
Gene Name:
RBKS
Uniprot ID:
Q9H477
Molecular weight:
34142.685
Reactions
Adenosine triphosphate + D-Ribose → ADP + D-Ribose 5-phosphatedetails