You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2012-09-11 18:57:53 UTC
Update Date2019-07-23 06:15:22 UTC
HMDB IDHMDB0034171
Secondary Accession Numbers
  • HMDB34171
Metabolite Identification
Common NameBenzeneacetonitrile
DescriptionBenzeneacetonitrile, also known as alpha-cyanotoluene or alpha-tolunitrile, belongs to the class of organic compounds known as benzyl cyanides. These are organic compounds containing an acetonitrile with one hydrogen replaced by a phenyl group. Benzeneacetonitrile is a very weakly acidic compound (based on its pKa). Benzeneacetonitrile exists in all living organisms, ranging from bacteria to humans. Outside of the human body, Benzeneacetonitrile is found, on average, in the highest concentration within kohlrabis and peppermints. Benzeneacetonitrile has also been detected, but not quantified in, several different foods, such as cabbages, garden tomato, papaya, cauliflowers, and green vegetables. This could make benzeneacetonitrile a potential biomarker for the consumption of these foods. It complexes with the ferric iron atom in this enzyme. Benzeneacetonitrile is a potentially toxic compound. Consequently the primary mechanism of toxicity for organic nitriles is their production of toxic cyanide ions or hydrogen cyanide. Cyanide binds to the ferric ion of methemoglobin to form inactive cyanmethemoglobin. Cyanide is mainly metabolized into thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase. Skin contact with cyanide salts can irritate and produce sores. Oxygen therapy can also be administered.
Structure
Data?1563862522
Synonyms
ValueSource
(Cyanomethyl)benzeneChEBI
2-PhenylacetonitrileChEBI
alpha-CyanotolueneChEBI
alpha-TolunitrileChEBI
Benzyl cyanideChEBI
Benzyl nitrileChEBI
a-CyanotolueneGenerator
Α-cyanotolueneGenerator
a-TolunitrileGenerator
Α-tolunitrileGenerator
.omega.-cyanotolueneHMDB
Acetic acid, phenyl-nitrileHMDB
alpha -CyanotolueneHMDB
alpha -TolunitrileHMDB
alpha-Cyano-tolueneHMDB
Benzeneacetonitrile, 9ciHMDB
BenzylkyanidHMDB
BenzylnitrileHMDB
CyanophenylmethaneHMDB
EnzylcyanideHMDB
Laquo omegaraquo -cyanotolueneHMDB
Omega-cyanotolueneHMDB
PhenacetonitrileHMDB
Phenyl acetyl nitrileHMDB
Phenyl-acetonitrileHMDB
PhenylacetonitrileHMDB
Phenylacetonitrile, liquidHMDB
BenzeneacetonitrileChEBI
Chemical FormulaC8H7N
Average Molecular Weight117.1479
Monoisotopic Molecular Weight117.057849229
IUPAC Name2-phenylacetonitrile
Traditional Namephenylacetonitrile
CAS Registry Number140-29-4
SMILES
N#CCC1=CC=CC=C1
InChI Identifier
InChI=1S/C8H7N/c9-7-6-8-4-2-1-3-5-8/h1-5H,6H2
InChI KeySUSQOBVLVYHIEX-UHFFFAOYSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as benzyl cyanides. These are organic compounds containing an acetonitrile with one hydrogen replaced by a phenyl group.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassBenzyl cyanides
Direct ParentBenzyl cyanides
Alternative Parents
Substituents
  • Benzyl-cyanide
  • Nitrile
  • Carbonitrile
  • Organic nitrogen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Organonitrogen compound
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External Descriptors
Ontology
Physiological effect

Health effect:

Disposition

Route of exposure:

Source:

Biological location:

Role

Environmental role:

Biological role:

Physical Properties
StateLiquid
Experimental Properties
PropertyValueReference
Melting Point-23.8 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.1 mg/mL at 25 °CNot Available
LogP1.56Not Available
Predicted Properties
PropertyValueSource
Water Solubility6.85 g/LALOGPS
logP1.42ALOGPS
logP1.67ChemAxon
logS-1.2ALOGPS
pKa (Strongest Acidic)14.33ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area23.79 ŲChemAxon
Rotatable Bond Count1ChemAxon
Refractivity36.34 m³·mol⁻¹ChemAxon
Polarizability12.75 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-9700000000-aa951610ae3086079fc3Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-6900000000-9fa568274538519d6221Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-4900000000-7fb420e2a4693843bcc6Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-9700000000-44dc07c52f713661d49dSpectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-9700000000-aa951610ae3086079fc3Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-6900000000-9fa568274538519d6221Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-4900000000-7fb420e2a4693843bcc6Spectrum
GC-MSGC-MS Spectrum - EI-B (Non-derivatized)splash10-014i-9700000000-44dc07c52f713661d49dSpectrum
Predicted GC-MSPredicted GC-MS Spectrum - GC-MS (Non-derivatized) - 70eV, Positivesplash10-014i-9600000000-3ff8c2a019af8041ccf5Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-014i-0900000000-26618186da25d2fb36a3Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-014i-2900000000-36bcc9666d8d6f02be93Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-0006-9100000000-e64aaf4670bfdd42e5ecSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-014i-0900000000-c300e5c9a5a8fd9efed7Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-014i-1900000000-62ae29742c669f0cbb48Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-00kr-9400000000-a31fa80a0b41e8872dfdSpectrum
MSMass Spectrum (Electron Ionization)splash10-014i-9600000000-bacbbfee69800587e876Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB012457
KNApSAcK IDC00007674
Chemspider ID13839308
KEGG Compound IDC16074
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound8794
PDB IDNot Available
ChEBI ID25979
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB ID
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Huang L, Liu Y, Xie F, Hu Y: An organic molecule modulated chemoselective cyclization of alkynyl nitriles tethered to 2-alkyl substituted chromones with multireactive sites. Org Lett. 2012 Dec 21;14(24):6122-5. doi: 10.1021/ol302964x. Epub 2012 Dec 4. [PubMed:23210678 ]
  2. Rao CN, Hoz S: Photostimulated reduction of nitriles by SmI2. J Org Chem. 2012 Apr 20;77(8):4029-34. doi: 10.1021/jo300383r. Epub 2012 Apr 11. [PubMed:22468753 ]
  3. Petrickova A, Vesela AB, Kaplan O, Kubac D, Uhnakova B, Malandra A, Felsberg J, Rinagelova A, Weyrauch P, Kren V, Bezouska K, Martinkova L: Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol. 2012 Feb;93(4):1553-61. doi: 10.1007/s00253-011-3525-7. Epub 2011 Sep 3. [PubMed:21892598 ]
  4. Amwayi PW, Masiga DK, Govender P, Teal PE, Torto B: Mass spectral determination of phenylacetonitrile (PAN) levels in body tissues of adult desert locust, Schistocerca gregaria. J Insect Physiol. 2012 Aug;58(8):1037-41. doi: 10.1016/j.jinsphys.2012.03.012. Epub 2012 May 17. [PubMed:22609420 ]
  5. Noge K, Abe M, Tamogami S: Phenylacetonitrile from the giant knotweed, Fallopia sachalinensis, infested by the Japanese beetle, Popillia japonica, is induced by exogenous methyl jasmonate. Molecules. 2011 Aug 3;16(8):6481-8. doi: 10.3390/molecules16086481. [PubMed:21814160 ]
  6. Strzalko T, Wartski L, Corset J, Castella-Ventura M, Froment F: Study of the lithiated phenylacetonitrile monoanions and dianions formed according to the lithiated base used (LHMDS, LDA, or n-BuLi). 2. Alkylation and deuteriation mechanism study by vibrational and NMR spectroscopy and quantum chemistry calculations. J Org Chem. 2012 Aug 3;77(15):6431-42. doi: 10.1021/jo300758g. Epub 2012 Jul 23. [PubMed:22742856 ]
  7. Tang YB, Zhang CM, Fang C, Hu C, Huang L, Chen CH, Xiao ZY: [Design, synthesis and evaluation of novel 2H-1, 4-benzodiazepine-2-ones as inhibitors of HIV-1 transcription]. Yao Xue Xue Bao. 2011 Jun;46(6):688-94. [PubMed:21882530 ]
  8. Mei L, Hai ZJ, Jie S, Ming ZS, Hao Y, Liang HK: Modular synthesis of oxazolines and their derivatives. J Comb Chem. 2009 Mar 9;11(2):220-7. doi: 10.1021/cc8001537. [PubMed:19138088 ]
  9. de Oliveira JR, Mizuno CM, Seleghim MH, Javaroti DC, Rezende MO, Landgraf MD, Sette LD, Porto AL: Biotransformation of phenylacetonitrile to 2-hydroxyphenylacetic acid by marine fungi. Mar Biotechnol (NY). 2013 Feb;15(1):97-103. doi: 10.1007/s10126-012-9464-1. Epub 2012 Jul 12. [PubMed:22790719 ]
  10. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .