You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Record Information
Version4.0
StatusExpected but not Quantified
Creation Date2012-09-21 13:26:29 UTC
Update Date2019-07-23 07:04:06 UTC
HMDB IDHMDB0056213
Secondary Accession Numbers
  • HMDB56213
Metabolite Identification
Common NameDG(18:1n9/0:0/20:5n3)
DescriptionDG(18:1n9/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:1n9/0:0/20:5n3), in particular, consists of one chain of oleic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
Structure
Data?1563865446
Synonyms
ValueSource
(2R)-2-Hydroxy-3-[(9Z)-octadec-9-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoic acidHMDB
Diacylglycerol(18:1/0:0/20:5)HMDB
Diacylglycerol(18:1W9/0:0/20:5W3)HMDB
DAG(18:1/0:0/20:5)HMDB
DG(38:6)HMDB
DAG(18:1N9/0:0/20:5N3)HMDB
DG(18:1/0:0/20:5)HMDB
DAG(38:6)HMDB
DiglycerideHMDB
DAG(18:1W9/0:0/20:5W3)HMDB
DiacylglycerolHMDB
Diacylglycerol(18:1n9/0:0/20:5n3)HMDB
1-Oleoyl-3-eicosapentaenoyl-sn-glycerolHMDB
DG(18:1W9/0:0/20:5W3)HMDB
1-(9Z-Octadecenoyl)-3-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerolHMDB
Diacylglycerol(38:6)HMDB
DG(18:1n9/0:0/20:5n3)Lipid Annotator
Chemical FormulaC41H68O5
Average Molecular Weight640.99
Monoisotopic Molecular Weight640.50667529
IUPAC Name(2R)-2-hydroxy-3-[(9Z)-octadec-9-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
Traditional Name(2R)-2-hydroxy-3-[(9Z)-octadec-9-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
CAS Registry NumberNot Available
SMILES
[H][C@@](O)(COC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC
InChI Identifier
InChI=1S/C41H68O5/c1-3-5-7-9-11-13-15-17-19-20-22-24-26-28-30-32-34-36-41(44)46-38-39(42)37-45-40(43)35-33-31-29-27-25-23-21-18-16-14-12-10-8-6-4-2/h5,7,11,13,17-19,21-22,24,28,30,39,42H,3-4,6,8-10,12,14-16,20,23,25-27,29,31-38H2,1-2H3/b7-5-,13-11-,19-17-,21-18-,24-22-,30-28-/t39-/m1/s1
InChI KeyXINLQRONPJSODT-NNAOSHBTSA-N
Chemical Taxonomy
Description belongs to the class of organic compounds known as other hydroxyeicosapolyenoic acids. These are hydroxyeicosapolyenoic acids which do not belong to the Hydroxyeicosapentaenoic acids, the Hydroxyeicosatetraenoic acids, or the Hydroxyeicosatrienoic acids.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassEicosanoids
Direct ParentOther hydroxyeicosapolyenoic acids
Alternative Parents
Substituents
  • Hydroxyeicosapolyenoic acid
  • 1,3-acyl-sn-glycerol
  • Diacylglycerol
  • Diradylglycerol
  • Fatty acid ester
  • Glycerolipid
  • Dicarboxylic acid or derivatives
  • Carboxylic acid ester
  • Secondary alcohol
  • Carboxylic acid derivative
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organic oxygen compound
  • Organic oxide
  • Carbonyl group
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Disposition

Source:

Biological location:

Process

Naturally occurring process:

Role

Industrial application:

Biological role:

Physical Properties
StateSolid
Experimental Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Predicted Properties
PropertyValueSource
Water Solubility1.5e-05 g/LALOGPS
logP9.3ALOGPS
logP12.5ChemAxon
logS-7.6ALOGPS
pKa (Strongest Acidic)13.63ChemAxon
pKa (Strongest Basic)-3.4ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area72.83 ŲChemAxon
Rotatable Bond Count34ChemAxon
Refractivity202 m³·mol⁻¹ChemAxon
Polarizability80.69 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Spectra
Spectrum TypeDescriptionSplash KeyView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Positivesplash10-05tu-1097005000-34b873860eeb1b9114b8Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Positivesplash10-05n0-2094000000-e747edf7334ac7df098eSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Positivesplash10-00kr-1091020000-e5e95616797d9e28751bSpectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 10V, Negativesplash10-0f89-0094002000-cd48e2f58ae537e91049Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 20V, Negativesplash10-0f89-1094000000-b8df82d29a0951155e70Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 40V, Negativesplash10-0f89-3092000000-7c013d6920d14a27544bSpectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Predicted Concentrations
BiospecimenValueOriginal ageOriginal sexOriginal conditionComments
Blood0.029 +/- 0.014 uMAdult (>18 years old)BothNormal (Most Probable)Calculated using MetaboAnalyst
Blood0.167 +/- 0.058 uMAdult (>18 years old)BothNormal (Upper Limit)Calculated using MetaboAnalyst
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FoodDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound131801918
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General ReferencesNot Available

Only showing the first 10 proteins. There are 115 proteins in total.

Enzymes

General function:
Involved in diacylglycerol kinase activity
Specific function:
Phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). May regulate the activity of protein kinase C by controlling the balance between these two signaling lipids. Activated in the nucleus in response to alpha-thrombin and nerve growth factor. May be involved in cAMP- induced activation of NR5A1 and subsequent steroidogenic gene transcription by delivering PA as ligand for NR5A1. Acts synergistically with NR5A1 on CYP17 transcriptional activity
Gene Name:
DGKQ
Uniprot ID:
P52824
Molecular weight:
101154.0
General function:
Involved in catalytic activity
Specific function:
Not Available
Gene Name:
PNLIP
Uniprot ID:
P16233
Molecular weight:
51156.48
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB1
Uniprot ID:
Q9NQ66
Molecular weight:
138565.805
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. This form has a role in retina signal transduction.
Gene Name:
PLCB4
Uniprot ID:
Q15147
Molecular weight:
136105.065
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB2
Uniprot ID:
Q00722
Molecular weight:
134023.21
General function:
Involved in diacylglycerol kinase activity
Specific function:
Reverses the normal flow of glycerolipid biosynthesis by phosphorylating diacylglycerol back to phosphatidic acid
Gene Name:
DGKG
Uniprot ID:
P49619
Molecular weight:
89095.3
General function:
Involved in catalytic activity
Specific function:
Hepatic lipase has the capacity to catalyze hydrolysis of phospholipids, mono-, di-, and triglycerides, and acyl-CoA thioesters. It is an important enzyme in HDL metabolism. Hepatic lipase binds heparin.
Gene Name:
LIPC
Uniprot ID:
P11150
Molecular weight:
55914.1
General function:
Involved in calcium ion binding
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes.
Gene Name:
PLCB3
Uniprot ID:
Q01970
Molecular weight:
138797.725
General function:
Involved in catalytic activity
Specific function:
May function as inhibitor of dietary triglyceride digestion. Lacks detectable lipase activity towards triglycerides, diglycerides, phosphatidylcholine, galactolipids or cholesterol esters (in vitro) (By similarity).
Gene Name:
PNLIPRP1
Uniprot ID:
P54315
Molecular weight:
Not Available
General function:
Involved in phosphoinositide phospholipase C activity
Specific function:
The production of the second messenger molecules diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) is mediated by activated phosphatidylinositol-specific phospholipase C enzymes. It is a crucial enzyme in transmembrane signaling.
Gene Name:
PLCG2
Uniprot ID:
P16885
Molecular weight:
147868.67

Transporters

General function:
Lipid transport and metabolism
Specific function:
Involved in translocation of long-chain fatty acids (LFCA) across the plasma membrane. The LFCA import appears to be hormone-regulated in a tissue-specific manner. In adipocytes, but not myocytes, insulin induces a rapid translocation of FATP1 from intracellular compartments to the plasma membrane, paralleled by increased LFCA uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane- associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LFCA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism. Has acyl-CoA ligase activity for long-chain and very-long-chain fatty acids
Gene Name:
SLC27A1
Uniprot ID:
Q6PCB7
Molecular weight:
71107.5
References
  1. Hatch GM, Smith AJ, Xu FY, Hall AM, Bernlohr DA: FATP1 channels exogenous FA into 1,2,3-triacyl-sn-glycerol and down-regulates sphingomyelin and cholesterol metabolism in growing 293 cells. J Lipid Res. 2002 Sep;43(9):1380-9. [PubMed:12235169 ]

Only showing the first 10 proteins. There are 115 proteins in total.