Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2005-11-16 15:48:42 UTC |
---|
Update Date | 2023-02-21 17:15:37 UTC |
---|
HMDB ID | HMDB0001336 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | 3,4-Dihydroxybenzeneacetic acid |
---|
Description | 3,4-Dihydroxyphenylacetic acid (DOPAC) is a phenolic acid. DOPAC is a neuronal metabolite of dopamine (DA). DA undergoes monoamine oxidase-catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily into DOPAC via aldehyde dehydrogenase (ALDH2). The biotransformation of DOPAL is critical as previous studies have demonstrated this DA-derived aldehyde to be a reactive electrophile and toxic to dopaminergic cells. Known inhibitors of mitochondrial ALDH2, such as 4-hydroxy-2-nonenal (4HNE) inhibit ALDH2-mediated oxidation of the endogenous neurotoxin DOPAL. 4HNE is one of the resulting products of oxidative stress, thus linking oxidative stress to the uncontrolled production of an endogenous neurotoxin relevant to Parkinson's disease. In early-onset Parkinson disease, there is markedly reduced activities of both monoamine oxidase (MAO) A and B. The amount of DOPAC, which is produced during dopamine oxidation by MAO, is greatly reduced as a result of increased parkin overexpression. Administration of methamphetamine to animals causes loss of DA terminals in the brain and significant decreases in dopamine and dihydroxyphenylacetic acid (DOPAC) in the striatum. Renal dopamine produced in the residual tubular units may be enhanced during a sodium challenge, thus behaving appropriately as a compensatory natriuretic hormone; however, the renal dopaminergic system in patients afflicted with renal parenchymal disorders should address parameters other than free urinary dopamine, namely the urinary excretion of L-DOPA and metabolites. DOPAC is one of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements. DOPAC exhibits a considerable antiproliferative effect in LNCaP prostate cancer and HCT116 colon cancer cells. The antiproliferative activity of DOPAC may be due to its catechol structure. A similar association of the catechol moiety in the B-ring with antiproliferative activity was demonstrated for flavanones (PMID:16956664 , 16455660 , 8561959 , 11369822 , 10443478 , 16365058 ). DOPAC can be found in Gram-positive bacteria (PMID:24752840 ). |
---|
Structure | InChI=1S/C8H8O4/c9-6-2-1-5(3-7(6)10)4-8(11)12/h1-3,9-10H,4H2,(H,11,12) |
---|
Synonyms | Value | Source |
---|
2-(3,4-DIHYDROXYPHENYL)acetIC ACID | ChEBI | 3,4-Dihydroxyphenyl acetic acid | ChEBI | 3,4-Dihydroxyphenylacetic acid | ChEBI | Dopacetic acid | ChEBI | Homoprotocatechuate | Kegg | 2-(3,4-DIHYDROXYPHENYL)acetate | Generator | 3,4-Dihydroxyphenyl acetate | Generator | 3,4-Dihydroxyphenylacetate | Generator | Dopacetate | Generator | 3,4-Dihydroxybenzeneacetate | Generator | 3,4 Dihydroxyphenylacetic acid | HMDB | 3,4-Dihydroxyphenylacetic acid, monosodium salt | HMDB | (3,4-Dihydroxyphenyl)-acetic acid | HMDB | (3,4-Dihydroxyphenyl)acetate | HMDB | (3,4-Dihydroxyphenyl)acetic acid | HMDB | 3,4-DHPOP | HMDB | 3,4-Dihydroxy-benzeneacetic acid | HMDB | 3,4-Dihydroxy-phenylacetic acid | HMDB | DHY | HMDB | Dihydroxyphenylacetate | HMDB | Dihydroxyphenylacetic acid | HMDB | HAA | HMDB | Homogentisic acid | HMDB | 3',4'-Dihydroxyphenylacetic acid | HMDB |
|
---|
Chemical Formula | C8H8O4 |
---|
Average Molecular Weight | 168.1467 |
---|
Monoisotopic Molecular Weight | 168.042258744 |
---|
IUPAC Name | 2-(3,4-dihydroxyphenyl)acetic acid |
---|
Traditional Name | 3,4 dihydroxyphenylacetic acid |
---|
CAS Registry Number | 102-32-9 |
---|
SMILES | OC(=O)CC1=CC(O)=C(O)C=C1 |
---|
InChI Identifier | InChI=1S/C8H8O4/c9-6-2-1-5(3-7(6)10)4-8(11)12/h1-3,9-10H,4H2,(H,11,12) |
---|
InChI Key | CFFZDZCDUFSOFZ-UHFFFAOYSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. |
---|
Kingdom | Organic compounds |
---|
Super Class | Benzenoids |
---|
Class | Phenols |
---|
Sub Class | Benzenediols |
---|
Direct Parent | Catechols |
---|
Alternative Parents | |
---|
Substituents | - Catechol
- 1-hydroxy-4-unsubstituted benzenoid
- 1-hydroxy-2-unsubstituted benzenoid
- Monocyclic benzene moiety
- Monocarboxylic acid or derivatives
- Carboxylic acid
- Carboxylic acid derivative
- Organic oxygen compound
- Organic oxide
- Hydrocarbon derivative
- Organooxygen compound
- Carbonyl group
- Aromatic homomonocyclic compound
|
---|
Molecular Framework | Aromatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | 168 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 4 mg/mL | Not Available | LogP | 0.98 | SANGSTER (1994) |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatizedDerivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
---|
3,4-Dihydroxybenzeneacetic acid,1TMS,isomer #1 | C[Si](C)(C)OC(=O)CC1=CC=C(O)C(O)=C1 | 1837.6 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,1TMS,isomer #2 | C[Si](C)(C)OC1=CC(CC(=O)O)=CC=C1O | 1811.5 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,1TMS,isomer #3 | C[Si](C)(C)OC1=CC=C(CC(=O)O)C=C1O | 1795.0 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,2TMS,isomer #1 | C[Si](C)(C)OC(=O)CC1=CC=C(O[Si](C)(C)C)C(O)=C1 | 1794.1 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,2TMS,isomer #2 | C[Si](C)(C)OC(=O)CC1=CC=C(O)C(O[Si](C)(C)C)=C1 | 1784.7 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,2TMS,isomer #3 | C[Si](C)(C)OC1=CC=C(CC(=O)O)C=C1O[Si](C)(C)C | 1814.4 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,3TMS,isomer #1 | C[Si](C)(C)OC(=O)CC1=CC=C(O[Si](C)(C)C)C(O[Si](C)(C)C)=C1 | 1844.9 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,1TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)CC1=CC=C(O)C(O)=C1 | 2070.1 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,1TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)OC1=CC(CC(=O)O)=CC=C1O | 2075.8 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,1TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)OC1=CC=C(CC(=O)O)C=C1O | 2052.1 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,2TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)CC1=CC=C(O[Si](C)(C)C(C)(C)C)C(O)=C1 | 2274.0 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,2TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)OC(=O)CC1=CC=C(O)C(O[Si](C)(C)C(C)(C)C)=C1 | 2257.0 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,2TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)OC1=CC=C(CC(=O)O)C=C1O[Si](C)(C)C(C)(C)C | 2320.8 | Semi standard non polar | 33892256 | 3,4-Dihydroxybenzeneacetic acid,3TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)CC1=CC=C(O[Si](C)(C)C(C)(C)C)C(O[Si](C)(C)C(C)(C)C)=C1 | 2511.3 | Semi standard non polar | 33892256 |
|
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-004i-0942000000-54f714e694a7c3daeaf4 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized) | splash10-004i-0931000000-c4bb79d921fb42cf1b40 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-00di-9310000000-9490bd0ec921894341f4 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-MS (3 TMS) | splash10-004i-0952000000-d45a1420d6ae61cb9169 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-EI-TOF (Non-derivatized) | splash10-004i-0942000000-54f714e694a7c3daeaf4 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-EI-TOF (Non-derivatized) | splash10-004i-0931000000-c4bb79d921fb42cf1b40 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-EI-TOF (Non-derivatized) | splash10-00di-9310000000-9490bd0ec921894341f4 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-MS (Non-derivatized) | splash10-004i-0952000000-d45a1420d6ae61cb9169 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-EI-TOF (Non-derivatized) | splash10-004i-0931000000-3fab9c521f7f85372b94 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-MS (Non-derivatized) - 70eV, Positive | splash10-00di-3900000000-9badffe195f5e0ba98e0 | 2017-07-27 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-MS (3 TMS) - 70eV, Positive | splash10-014i-4093000000-178e6eeb94df071e6c15 | 2017-10-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - 3,4-Dihydroxybenzeneacetic acid GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid , negative-QTOF | splash10-014i-0900000000-709dd9faccdbbb3dc088 | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 40V, Negative-QTOF | splash10-0a4l-9100000000-cf69597350b36ab34199 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 20V, Negative-QTOF | splash10-0a4i-9200000000-298c198dac69afd9b0a3 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 35V, Negative-QTOF | splash10-014i-0900000000-ace1596cdfcf99646e9f | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 35V, Negative-QTOF | splash10-00di-0900000000-e7f718ad00bdba667583 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 35V, Negative-QTOF | splash10-00di-1900000000-d8334a99b44e227f0c59 | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 10V, Negative-QTOF | splash10-01b9-1900000000-72071b19a4bfa3da409d | 2021-09-20 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid Quattro_QQQ 10V, Positive-QTOF (Annotated) | splash10-00di-0900000000-3e7377f36ca2547f4885 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid Quattro_QQQ 25V, Positive-QTOF (Annotated) | splash10-00di-2900000000-60e1fc55d54131c2923e | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid Quattro_QQQ 40V, Positive-QTOF (Annotated) | splash10-0fi0-9400000000-c63542b296bac95866e2 | 2012-07-24 | HMDB team, MONA | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 10V, Negative-QTOF | splash10-01b9-0900000000-a59d2cab0d3d859760a7 | 2015-05-27 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 20V, Negative-QTOF | splash10-00xs-1900000000-6f630370c11294562cb7 | 2015-05-27 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 40V, Negative-QTOF | splash10-0a4l-9800000000-a45be46f3b52664dd4d1 | 2015-05-27 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 10V, Negative-QTOF | splash10-01b9-0900000000-a59d2cab0d3d859760a7 | 2015-05-27 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 20V, Negative-QTOF | splash10-00xs-1900000000-6f630370c11294562cb7 | 2015-05-27 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 40V, Negative-QTOF | splash10-0a4l-9800000000-a45be46f3b52664dd4d1 | 2015-05-27 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 10V, Negative-QTOF | splash10-00di-0900000000-aec26fe78ab78ddd4021 | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 20V, Negative-QTOF | splash10-00dj-2900000000-e59402b8b36f408fbe1c | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 40V, Negative-QTOF | splash10-00r6-9400000000-f36bad25ade880ae2e1f | 2021-09-22 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 10V, Positive-QTOF | splash10-0udi-0900000000-579796710abc38249c3a | 2015-05-26 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 20V, Positive-QTOF | splash10-0fk9-0900000000-22f8a4f4efd0f10804b5 | 2015-05-26 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 40V, Positive-QTOF | splash10-0zmi-9700000000-42b3de6bccbc10ad7b48 | 2015-05-26 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 10V, Positive-QTOF | splash10-0udi-0900000000-579796710abc38249c3a | 2015-05-27 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 20V, Positive-QTOF | splash10-0fk9-0900000000-22f8a4f4efd0f10804b5 | 2015-05-27 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - 3,4-Dihydroxybenzeneacetic acid 40V, Positive-QTOF | splash10-0zmi-9700000000-42b3de6bccbc10ad7b48 | 2015-05-27 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Experimental 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | 2012-12-04 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | 2012-12-05 | Wishart Lab | View Spectrum |
IR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted IR Spectrum | IR Ion Spectrum (Quadrupole Ion Trap, ESI-, Adduct: [M-H]-) | 2022-02-11 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Quadrupole Ion Trap, ESI+, Adduct: [M+Na]+) | 2022-02-11 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M-H]-) | 2023-02-03 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+) | 2023-02-03 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+) | 2023-02-03 | FELIX lab | View Spectrum |
|
---|
General References | - Goldstein DS, Eisenhofer G, Kopin IJ: Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther. 2003 Jun;305(3):800-11. Epub 2003 Mar 20. [PubMed:12649306 ]
- Panholzer TJ, Beyer J, Lichtwald K: Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine. Clin Chem. 1999 Feb;45(2):262-8. [PubMed:9931050 ]
- Raskind MA, Peskind ER, Holmes C, Goldstein DS: Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer's disease. Biol Psychiatry. 1999 Sep 15;46(6):756-65. [PubMed:10494443 ]
- Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
- Eklundh T, Eriksson M, Sjoberg S, Nordin C: Monoamine precursors, transmitters and metabolites in cerebrospinal fluid: a prospective study in healthy male subjects. J Psychiatr Res. 1996 May-Jun;30(3):201-8. [PubMed:8884658 ]
- Ebinger G, Michotte Y, Herregodts P: The significance of homovanillic acid and 3,4-dihydroxyphenylacetic acid concentrations in human lumbar cerebrospinal fluid. J Neurochem. 1987 Jun;48(6):1725-9. [PubMed:3572399 ]
- Van Loon GR, De Souza EB, Kim C: Alterations in brain dopamine and serotonin metabolism during the development of tolerance to human beta-endorphin in rats. Can J Physiol Pharmacol. 1978 Dec;56(6):1067-71. [PubMed:743624 ]
- Braestrup C: Biochemical differentiation of amphetamine vs methylphenidate and nomifensine in rats. J Pharm Pharmacol. 1977 Aug;29(8):463-70. [PubMed:19594 ]
- Nakao N, Shintani-Mizushima A, Kakishita K, Itakura T: The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson's disease. Exp Neurol. 2004 Jul;188(1):65-73. [PubMed:15191803 ]
- Annunziato LA, Wuerthele SM, Moore KE: Comparative effects of penfluridol on circling behavior and striatal DOPAC and serum prolactin concentrations in the rat. Eur J Pharmacol. 1978 Aug 1;50(3):187-92. [PubMed:567584 ]
- De Simoni MG, Guardabasso V, Misterek K, Algeri S: Similarities and differences between D-ALA2 MET5 enkephalin amide and morphine in the induction of tolerance to their effects on catalepsy and on dopamine metabolism in the rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1982 Nov;321(2):105-11. [PubMed:6891440 ]
- Gramsch C, Blasig J, Herz A: Changes in striatal dopamine metabolism during precipitated morphine withdrawal. Eur J Pharmacol. 1977 Aug 1;44(3):231-40. [PubMed:560969 ]
- Fornstedt B, Brun A, Rosengren E, Carlsson A: The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm Park Dis Dement Sect. 1989;1(4):279-95. [PubMed:2597314 ]
- Garrett MC, Soares-da-Silva P: Increased cerebrospinal fluid dopamine and 3,4-dihydroxyphenylacetic acid levels in Huntington's disease: evidence for an overactive dopaminergic brain transmission. J Neurochem. 1992 Jan;58(1):101-6. [PubMed:1309230 ]
- Massotti M, Longo VG: Role of the dopaminergic system in the cataleptogenic action of bulbocapnine. J Pharm Pharmacol. 1979 Oct;31(10):691-5. [PubMed:41042 ]
- Tekes K, Tothfalusi L, Gaal J, Magyar K: Effect of MAO inhibitors on the uptake and metabolism of dopamine in rat and human brain. Pol J Pharmacol Pharm. 1988 Nov-Dec;40(6):653-8. [PubMed:3152003 ]
- Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK: Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell. 1997 Sep 19;90(6):991-1001. [PubMed:9323127 ]
- Hutson PH, Curzon G: Dopamine metabolites in rat cisternal cerebrospinal fluid: major contribution from extrastriatal dopamine neurones. J Neurochem. 1986 Jan;46(1):186-90. [PubMed:2415677 ]
- Thurmond JB, Brown JW: Effect of brain monoamine precursors on stress-induced behavioral and neurochemical changes in aged mice. Brain Res. 1984 Mar 26;296(1):93-102. [PubMed:6201238 ]
- Kogan BM, Tkachenko AA, Drozdov AZ, Andrianova EP, Filatova TS, Man'kovskaia IV, Kovaleva IA: [Monoamine metabolism in different forms of paraphilias]. Zh Nevrol Psikhiatr Im S S Korsakova. 1995;95(6):52-6. [PubMed:8788979 ]
- Florang VR, Rees JN, Brogden NK, Anderson DG, Hurley TD, Doorn JA: Inhibition of the oxidative metabolism of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism, by 4-hydroxy-2-nonenal. Neurotoxicology. 2007 Jan;28(1):76-82. Epub 2006 Aug 1. [PubMed:16956664 ]
- Jiang H, Jiang Q, Liu W, Feng J: Parkin suppresses the expression of monoamine oxidases. J Biol Chem. 2006 Mar 31;281(13):8591-9. Epub 2006 Feb 2. [PubMed:16455660 ]
- Cadet JL, Ali SF, Rothman RB, Epstein CJ: Neurotoxicity, drugs and abuse, and the CuZn-superoxide dismutase transgenic mice. Mol Neurobiol. 1995 Aug-Dec;11(1-3):155-63. [PubMed:8561959 ]
- Pestana M, Jardim H, Correia F, Vieira-Coelho MA, Soares-da-Silva P: Renal dopaminergic mechanisms in renal parenchymal diseases and hypertension. Nephrol Dial Transplant. 2001;16 Suppl 1:53-9. [PubMed:11369822 ]
- Kim DH, Kim SY, Park SY, Han MJ: Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol Pharm Bull. 1999 Jul;22(7):749-51. [PubMed:10443478 ]
- Gao K, Xu A, Krul C, Venema K, Liu Y, Niu Y, Lu J, Bensoussan L, Seeram NP, Heber D, Henning SM: Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. J Nutr. 2006 Jan;136(1):52-7. [PubMed:16365058 ]
- Radkov AD, Moe LA: Bacterial synthesis of D-amino acids. Appl Microbiol Biotechnol. 2014 Jun;98(12):5363-74. doi: 10.1007/s00253-014-5726-3. Epub 2014 Apr 22. [PubMed:24752840 ]
- Koistinen VM (2019). Effects of Food Processing and Gut Microbial Metabolism on Whole Grain Phytochemicals: A Metabolomics Approach. In Publications of the University of Eastern Finland. Dissertations in Health Sciences., no 510 (pp. 26-58). University of Eastern Finland. [ISBN:978-952-61-3088-0 ]
|
---|