Hmdb loader
Record Information
Version5.0
StatusPredicted
Creation Date2021-07-29 19:06:08 UTC
Update Date2021-09-16 22:46:38 UTC
HMDB IDHMDB0242035
Secondary Accession NumbersNone
Metabolite Identification
Common NameN-Lauroyl Leucine
DescriptionN-lauroyl leucine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Leucine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Leucine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Leucine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504 ). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998 ; PMID: 25136293 ; PMID: 28854168 ).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168 ). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153 ). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293 ). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167 ). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168 ). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Structure
Thumb
SynonymsNot Available
Chemical FormulaC18H35NO3
Average Molecular Weight313.482
Monoisotopic Molecular Weight313.261693991
IUPAC Name2-dodecanamido-4-methylpentanoic acid
Traditional Name2-dodecanamido-4-methylpentanoic acid
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCC(=O)NC(CC(C)C)C(O)=O
InChI Identifier
InChI=1S/C18H35NO3/c1-4-5-6-7-8-9-10-11-12-13-17(20)19-16(18(21)22)14-15(2)3/h15-16H,4-14H2,1-3H3,(H,19,20)(H,21,22)
InChI KeyCDOCNWRWMUMCLP-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as leucine and derivatives. Leucine and derivatives are compounds containing leucine or a derivative thereof resulting from reaction of leucine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentLeucine and derivatives
Alternative Parents
Substituents
  • Leucine or derivatives
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Branched fatty acid
  • Methyl-branched fatty acid
  • Fatty amide
  • N-acyl-amine
  • Fatty acid
  • Fatty acyl
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxide
  • Organic oxygen compound
  • Organic nitrogen compound
  • Hydrocarbon derivative
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Physiological effectNot Available
DispositionNot Available
ProcessNot Available
RoleNot Available
Physical Properties
StateNot Available
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
logP5.04ALOGPS
logP5.2ChemAxon
logS-4.7ALOGPS
pKa (Strongest Acidic)4.26ChemAxon
pKa (Strongest Basic)-1.3ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area66.4 ŲChemAxon
Rotatable Bond Count14ChemAxon
Refractivity89.65 m³·mol⁻¹ChemAxon
Polarizability38.52 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+183.12630932474
DeepCCS[M-H]-180.57530932474
DeepCCS[M-2H]-214.24830932474
DeepCCS[M+Na]+190.63730932474
AllCCS[M+H]+186.832859911
AllCCS[M+H-H2O]+184.232859911
AllCCS[M+NH4]+189.332859911
AllCCS[M+Na]+190.032859911
AllCCS[M-H]-183.232859911
AllCCS[M+Na-2H]-184.632859911
AllCCS[M+HCOO]-186.232859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
N-Lauroyl LeucineCCCCCCCCCCCC(=O)NC(CC(C)C)C(O)=O3317.8Standard polar33892256
N-Lauroyl LeucineCCCCCCCCCCCC(=O)NC(CC(C)C)C(O)=O2179.9Standard non polar33892256
N-Lauroyl LeucineCCCCCCCCCCCC(=O)NC(CC(C)C)C(O)=O2314.3Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
N-Lauroyl Leucine,2TMS,isomer #1CCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C2399.6Semi standard non polar33892256
N-Lauroyl Leucine,2TMS,isomer #1CCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C2382.3Standard non polar33892256
N-Lauroyl Leucine,2TMS,isomer #1CCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C2463.0Standard polar33892256
N-Lauroyl Leucine,2TBDMS,isomer #1CCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C2864.2Semi standard non polar33892256
N-Lauroyl Leucine,2TBDMS,isomer #1CCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C2721.8Standard non polar33892256
N-Lauroyl Leucine,2TBDMS,isomer #1CCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C2726.8Standard polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - N-Lauroyl Leucine GC-MS (Non-derivatized) - 70eV, Positivesplash10-067i-9670000000-0adb8281d1122eda334f2021-09-23Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Lauroyl Leucine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Lauroyl Leucine 10V, Positive-QTOFsplash10-03di-2329000000-7336f04d4b977755dc512021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Lauroyl Leucine 20V, Positive-QTOFsplash10-000i-9400000000-d7ef1ced03ffc345d3c32021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Lauroyl Leucine 40V, Positive-QTOFsplash10-0536-9100000000-c8506c3fe2998001117b2021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Lauroyl Leucine 10V, Negative-QTOFsplash10-03di-0039000000-f67cac6013a05314631a2021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Lauroyl Leucine 20V, Negative-QTOFsplash10-01q9-1905000000-dce66049563cf75fcb8f2021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Lauroyl Leucine 40V, Negative-QTOFsplash10-001l-7910000000-503d1865a486eb8db4b32021-10-12Wishart LabView Spectrum
Biological Properties
Cellular LocationsNot Available
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider ID8015528
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound9839810
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Bradshaw HB, Walker JM: The expanding field of cannabimimetic and related lipid mediators. Br J Pharmacol. 2005 Feb;144(4):459-65. doi: 10.1038/sj.bjp.0706093. [PubMed:15655504 ]
  2. Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW: Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One. 2012;7(11):e48852. doi: 10.1371/journal.pone.0048852. Epub 2012 Nov 8. [PubMed:23144998 ]
  3. Raboune S, Stuart JM, Leishman E, Takacs SM, Rhodes B, Basnet A, Jameyfield E, McHugh D, Widlanski T, Bradshaw HB: Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front Cell Neurosci. 2014 Aug 1;8:195. doi: 10.3389/fncel.2014.00195. eCollection 2014. [PubMed:25136293 ]
  4. Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross JR, Emiliano AB, Han SM, Chu J, Vila-Farres X, Kaplitt J, Rogoz A, Calle PY, Hunter C, Bitok JK, Brady SF: Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature. 2017 Sep 7;549(7670):48-53. doi: 10.1038/nature23874. Epub 2017 Aug 30. [PubMed:28854168 ]
  5. Bradshaw HB, Raboune S, Hollis JL: Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication. Life Sci. 2013 Mar 19;92(8-9):404-9. doi: 10.1016/j.lfs.2012.11.008. Epub 2012 Nov 20. [PubMed:23178153 ]
  6. Long JZ, Roche AM, Berdan CA, Louie SM, Roberts AJ, Svensson KJ, Dou FY, Bateman LA, Mina AI, Deng Z, Jedrychowski MP, Lin H, Kamenecka TM, Asara JM, Griffin PR, Banks AS, Nomura DK, Spiegelman BM: Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6937-E6945. doi: 10.1073/pnas.1803389115. Epub 2018 Jul 2. [PubMed:29967167 ]