Hmdb loader
Record Information
Version5.0
StatusPredicted
Creation Date2021-08-24 04:12:13 UTC
Update Date2021-09-16 22:46:47 UTC
HMDB IDHMDB0242094
Secondary Accession NumbersNone
Metabolite Identification
Common NameN-Nervonoyl Leucine
DescriptionN-nervonoyl leucine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Nervonic acid amide of Leucine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Nervonoyl Leucine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Nervonoyl Leucine is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504 ). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998 ; PMID: 25136293 ; PMID: 28854168 ).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168 ). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153 ). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293 ). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167 ). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168 ). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Structure
Thumb
SynonymsNot Available
Chemical FormulaC30H57NO3
Average Molecular Weight479.79
Monoisotopic Molecular Weight479.433844699
IUPAC Name4-methyl-2-(tetracos-15-enamido)pentanoic acid
Traditional Name4-methyl-2-(tetracos-15-enamido)pentanoic acid
CAS Registry NumberNot Available
SMILES
CCCCCCCCC=CCCCCCCCCCCCCCC(=O)NC(CC(C)C)C(O)=O
InChI Identifier
InChI=1S/C30H57NO3/c1-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-29(32)31-28(30(33)34)26-27(2)3/h11-12,27-28H,4-10,13-26H2,1-3H3,(H,31,32)(H,33,34)
InChI KeyACONHXQMWHHJSE-UHFFFAOYSA-N
Chemical Taxonomy
ClassificationNot classified
Ontology
Physiological effectNot Available
DispositionNot Available
ProcessNot Available
RoleNot Available
Physical Properties
StateNot Available
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
logP9.32ALOGPS
logP10.17ChemAxon
logS-7.3ALOGPS
pKa (Strongest Acidic)4.26ChemAxon
pKa (Strongest Basic)-1.3ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count2ChemAxon
Polar Surface Area66.4 ŲChemAxon
Rotatable Bond Count25ChemAxon
Refractivity145.98 m³·mol⁻¹ChemAxon
Polarizability63.98 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+229.6230932474
DeepCCS[M-H]-227.06930932474
DeepCCS[M-2H]-260.35930932474
DeepCCS[M+Na]+236.58330932474

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
N-Nervonoyl LeucineCCCCCCCCC=CCCCCCCCCCCCCCC(=O)NC(CC(C)C)C(O)=O3977.5Standard polar33892256
N-Nervonoyl LeucineCCCCCCCCC=CCCCCCCCCCCCCCC(=O)NC(CC(C)C)C(O)=O3256.2Standard non polar33892256
N-Nervonoyl LeucineCCCCCCCCC=CCCCCCCCCCCCCCC(=O)NC(CC(C)C)C(O)=O3485.0Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
N-Nervonoyl Leucine,2TMS,isomer #1CCCCCCCCC=CCCCCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C3514.8Semi standard non polar33892256
N-Nervonoyl Leucine,2TMS,isomer #1CCCCCCCCC=CCCCCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C3403.0Standard non polar33892256
N-Nervonoyl Leucine,2TMS,isomer #1CCCCCCCCC=CCCCCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C)[Si](C)(C)C3460.8Standard polar33892256
N-Nervonoyl Leucine,2TBDMS,isomer #1CCCCCCCCC=CCCCCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C4020.5Semi standard non polar33892256
N-Nervonoyl Leucine,2TBDMS,isomer #1CCCCCCCCC=CCCCCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C3684.4Standard non polar33892256
N-Nervonoyl Leucine,2TBDMS,isomer #1CCCCCCCCC=CCCCCCCCCCCCCCC(=O)N(C(CC(C)C)C(=O)O[Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C3632.3Standard polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - N-Nervonoyl Leucine GC-MS (Non-derivatized) - 70eV, Positivesplash10-0f8a-9656600000-3da73316464ca4d825e22021-09-23Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - N-Nervonoyl Leucine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Nervonoyl Leucine 10V, Positive-QTOFsplash10-001i-2201900000-30743d6365451e0860a92021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Nervonoyl Leucine 20V, Positive-QTOFsplash10-000i-9303000000-bf7771d8cdaf79de8cc42021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Nervonoyl Leucine 40V, Positive-QTOFsplash10-001l-9600000000-d36d824f4056cc245b8d2021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Nervonoyl Leucine 10V, Negative-QTOFsplash10-004i-0100900000-4b9ca680e9769126d86e2021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Nervonoyl Leucine 20V, Negative-QTOFsplash10-003r-2901500000-2cd70be499025cdc2ffd2021-10-12Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - N-Nervonoyl Leucine 40V, Negative-QTOFsplash10-01qc-9504100000-309259633f0d486729552021-10-12Wishart LabView Spectrum
Biological Properties
Cellular LocationsNot Available
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Bradshaw HB, Walker JM: The expanding field of cannabimimetic and related lipid mediators. Br J Pharmacol. 2005 Feb;144(4):459-65. doi: 10.1038/sj.bjp.0706093. [PubMed:15655504 ]
  2. Grapov D, Adams SH, Pedersen TL, Garvey WT, Newman JW: Type 2 diabetes associated changes in the plasma non-esterified fatty acids, oxylipins and endocannabinoids. PLoS One. 2012;7(11):e48852. doi: 10.1371/journal.pone.0048852. Epub 2012 Nov 8. [PubMed:23144998 ]
  3. Raboune S, Stuart JM, Leishman E, Takacs SM, Rhodes B, Basnet A, Jameyfield E, McHugh D, Widlanski T, Bradshaw HB: Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation. Front Cell Neurosci. 2014 Aug 1;8:195. doi: 10.3389/fncel.2014.00195. eCollection 2014. [PubMed:25136293 ]
  4. Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, Pickard AJ, Cross JR, Emiliano AB, Han SM, Chu J, Vila-Farres X, Kaplitt J, Rogoz A, Calle PY, Hunter C, Bitok JK, Brady SF: Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature. 2017 Sep 7;549(7670):48-53. doi: 10.1038/nature23874. Epub 2017 Aug 30. [PubMed:28854168 ]
  5. Bradshaw HB, Raboune S, Hollis JL: Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication. Life Sci. 2013 Mar 19;92(8-9):404-9. doi: 10.1016/j.lfs.2012.11.008. Epub 2012 Nov 20. [PubMed:23178153 ]
  6. Long JZ, Roche AM, Berdan CA, Louie SM, Roberts AJ, Svensson KJ, Dou FY, Bateman LA, Mina AI, Deng Z, Jedrychowski MP, Lin H, Kamenecka TM, Asara JM, Griffin PR, Banks AS, Nomura DK, Spiegelman BM: Ablation of PM20D1 reveals N-acyl amino acid control of metabolism and nociception. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6937-E6945. doi: 10.1073/pnas.1803389115. Epub 2018 Jul 2. [PubMed:29967167 ]