Record Information |
---|
Version | 5.0 |
---|
Status | Predicted |
---|
Creation Date | 2021-09-21 22:54:42 UTC |
---|
Update Date | 2021-10-01 16:54:12 UTC |
---|
HMDB ID | HMDB0301313 |
---|
Secondary Accession Numbers | None |
---|
Metabolite Identification |
---|
Common Name | (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA |
---|
Description | (9s,10r,11e,13s)-9,10,13-trihydroxyoctadec-11-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (9S_10R_11E_13S)-9_10_13-trihydroxyoctadec-11-enoic acid thioester of coenzyme A. (9s,10r,11e,13s)-9,10,13-trihydroxyoctadec-11-enoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3'-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoA's are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (9s,10r,11e,13s)-9,10,13-trihydroxyoctadec-11-enoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (9s,10r,11e,13s)-9,10,13-trihydroxyoctadec-11-enoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA into (9S_10R_11E_13S)-9_10_13-trihydroxyoctadec-11-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (9S_10R_11E_13S)-9_10_13-trihydroxyoctadec-11-enoylcarnitine is converted back to (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA occurs in four steps. First, since (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thiolase cleaves between the alpha carbon and ketone to release one molecule of acetyl-CoA and a new acyl-CoA which is now 2 carbons shorter. This four-step process repeats until (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA has had all its carbons removed from the chain, leaving only acetyl-CoA. Beta oxidation, as well as alpha-oxidation, also occurs in the peroxisome. The peroxisome handles beta oxidation of fatty acids that have more than 20 carbons in their chain because the peroxisome contains very-long-chain Acyl-CoA synthetases and dehydrogenases. The heart primarily metabolizes fat for energy and Acyl-CoA metabolism has been identified as a critical molecule in early-stage heart muscle pump failure. Cellular acyl-CoA content also correlates with insulin resistance, suggesting that it can mediate lipotoxicity in non-adipose tissues. Acyl-CoA: diacylglycerol acyltransferase (DGAT) plays an important role in energy metabolism on account of key enzyme in triglyceride biosynthesis. The study of acyl-CoAs is an active area of research and it is likely that many novel acyl-CoAs will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules. |
---|
Structure | CCCCCC(O)C=CC(O)C(O)CCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OCC1OC(C(O)C1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N InChI=1S/C39H68N7O20P3S/c1-4-5-9-12-25(47)15-16-27(49)26(48)13-10-7-6-8-11-14-30(51)70-20-19-41-29(50)17-18-42-37(54)34(53)39(2,3)22-63-69(60,61)66-68(58,59)62-21-28-33(65-67(55,56)57)32(52)38(64-28)46-24-45-31-35(40)43-23-44-36(31)46/h15-16,23-28,32-34,38,47-49,52-53H,4-14,17-22H2,1-3H3,(H,41,50)(H,42,54)(H,58,59)(H,60,61)(H2,40,43,44)(H2,55,56,57) |
---|
Synonyms | Value | Source |
---|
4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(9,10,13-trihydroxyoctadec-11-enoyl)sulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidate | Generator | 4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(9,10,13-trihydroxyoctadec-11-enoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidate | Generator | 4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-[2-({2-[(9,10,13-trihydroxyoctadec-11-enoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]butanimidic acid | Generator |
|
---|
Chemical Formula | C39H68N7O20P3S |
---|
Average Molecular Weight | 1079.98 |
---|
Monoisotopic Molecular Weight | 1079.345269786 |
---|
IUPAC Name | {[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9,10,13-trihydroxyoctadec-11-enoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid |
---|
Traditional Name | [5-(6-aminopurin-9-yl)-4-hydroxy-2-({[hydroxy([hydroxy(3-hydroxy-2,2-dimethyl-3-{[2-({2-[(9,10,13-trihydroxyoctadec-11-enoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy)phosphoryl]oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxyphosphonic acid |
---|
CAS Registry Number | Not Available |
---|
SMILES | CCCCCC(O)C=CC(O)C(O)CCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OCC1OC(C(O)C1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N |
---|
InChI Identifier | InChI=1S/C39H68N7O20P3S/c1-4-5-9-12-25(47)15-16-27(49)26(48)13-10-7-6-8-11-14-30(51)70-20-19-41-29(50)17-18-42-37(54)34(53)39(2,3)22-63-69(60,61)66-68(58,59)62-21-28-33(65-67(55,56)57)32(52)38(64-28)46-24-45-31-35(40)43-23-44-36(31)46/h15-16,23-28,32-34,38,47-49,52-53H,4-14,17-22H2,1-3H3,(H,41,50)(H,42,54)(H,58,59)(H,60,61)(H2,40,43,44)(H2,55,56,57) |
---|
InChI Key | PSKMRGOPHNOKDV-UHFFFAOYSA-N |
---|
Chemical Taxonomy |
---|
Classification | Not classified |
---|
Ontology |
---|
Physiological effect | Not Available |
---|
Disposition | Not Available |
---|
Process | Not Available |
---|
Role | Not Available |
---|
Physical Properties |
---|
State | Not Available |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | Not Available | Not Available |
|
---|
Experimental Chromatographic Properties | Not Available |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesNot Available |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
MS | Mass Spectrum (Electron Ionization) | Not Available | 2022-08-06 | Not Available | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA 10V, Positive-QTOF | splash10-01ox-9000000002-bbd3cac7356ff3893c75 | 2021-10-21 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA 20V, Positive-QTOF | splash10-000f-9200000118-5109a9d93a8e98f424be | 2021-10-21 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA 40V, Positive-QTOF | splash10-00di-0102390000-523592cbd79ff24c4a41 | 2021-10-21 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA 10V, Negative-QTOF | splash10-01t9-9000000004-8b5aef74d2f817740a13 | 2021-10-21 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA 20V, Negative-QTOF | splash10-0006-9000000002-bd7050b6d82e25b5bc0c | 2021-10-21 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - (9S,10R,11E,13S)-9,10,13-trihydroxyoctadec-11-enoyl-CoA 40V, Negative-QTOF | splash10-00mx-9002402402-28c77f0583effad4b389 | 2021-10-21 | Wishart Lab | View Spectrum |
|
---|