General References
| - Nagase T, Ishikawa K, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O: Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 1998 Feb 28;5(1):31-9. [PubMed:9628581 ]
- Mink M, Fogelgren B, Olszewski K, Maroy P, Csiszar K: A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics. 2001 Jun 1;74(2):234-44. doi: 10.1006/geno.2001.6548. [PubMed:11386760 ]
- Liberati NT, Fitzgerald KA, Kim DH, Feinbaum R, Golenbock DT, Ausubel FM: Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6593-8. doi: 10.1073/pnas.0308625101. [PubMed:15123841 ]
- Carty M, Goodbody R, Schroder M, Stack J, Moynagh PN, Bowie AG: The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol. 2006 Oct;7(10):1074-81. doi: 10.1038/ni1382. Epub 2006 Sep 10. [PubMed:16964262 ]
- O'Neill LA: DisSARMing Toll-like receptor signaling. Nat Immunol. 2006 Oct;7(10):1023-5. doi: 10.1038/ni1006-1023. [PubMed:16985498 ]
- Kim Y, Zhou P, Qian L, Chuang JZ, Lee J, Li C, Iadecola C, Nathan C, Ding A: MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med. 2007 Sep 3;204(9):2063-74. doi: 10.1084/jem.20070868. Epub 2007 Aug 27. [PubMed:17724133 ]
- Peng J, Yuan Q, Lin B, Panneerselvam P, Wang X, Luan XL, Lim SK, Leung BP, Ho B, Ding JL: SARM inhibits both TRIF- and MyD88-mediated AP-1 activation. Eur J Immunol. 2010 Jun;40(6):1738-47. doi: 10.1002/eji.200940034. [PubMed:20306472 ]
- Panneerselvam P, Singh LP, Ho B, Chen J, Ding JL: Targeting of pro-apoptotic TLR adaptor SARM to mitochondria: definition of the critical region and residues in the signal sequence. Biochem J. 2012 Mar 1;442(2):263-71. doi: 10.1042/BJ20111653. [PubMed:22145856 ]
- Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J: SARM1 activation triggers axon degeneration locally via NAD(+) destruction. Science. 2015 Apr 24;348(6233):453-7. doi: 10.1126/science.1258366. Epub 2015 Apr 23. [PubMed:25908823 ]
- Summers DW, Gibson DA, DiAntonio A, Milbrandt J: SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):E6271-E6280. doi: 10.1073/pnas.1601506113. Epub 2016 Sep 26. [PubMed:27671644 ]
- Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J: The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD(+) Cleavage Activity that Promotes Pathological Axonal Degeneration. Neuron. 2017 Mar 22;93(6):1334-1343.e5. doi: 10.1016/j.neuron.2017.02.022. [PubMed:28334607 ]
- Essuman K, Summers DW, Sasaki Y, Mao X, Yim AKY, DiAntonio A, Milbrandt J: TIR Domain Proteins Are an Ancient Family of NAD(+)-Consuming Enzymes. Curr Biol. 2018 Feb 5;28(3):421-430.e4. doi: 10.1016/j.cub.2017.12.024. Epub 2018 Jan 25. [PubMed:29395922 ]
- Zhao ZY, Xie XJ, Li WH, Liu J, Chen Z, Zhang B, Li T, Li SL, Lu JG, Zhang L, Zhang LH, Xu Z, Lee HC, Zhao YJ: A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-apoptotic Cell Death. iScience. 2019 May 31;15:452-466. doi: 10.1016/j.isci.2019.05.001. Epub 2019 May 4. [PubMed:31128467 ]
- Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, Chung EH, Osborne Nishimura E, DiAntonio A, Milbrandt J, Dangl JL, Nishimura MT: TIR domains of plant immune receptors are NAD(+)-cleaving enzymes that promote cell death. Science. 2019 Aug 23;365(6455):799-803. doi: 10.1126/science.aax1771. [PubMed:31439793 ]
- Loring HS, Icso JD, Nemmara VV, Thompson PR: Initial Kinetic Characterization of Sterile Alpha and Toll/Interleukin Receptor Motif-Containing Protein 1. Biochemistry. 2020 Mar 3;59(8):933-942. doi: 10.1021/acs.biochem.9b01078. Epub 2020 Feb 17. [PubMed:32049506 ]
- Loring HS, Parelkar SS, Mondal S, Thompson PR: Identification of the first noncompetitive SARM1 inhibitors. Bioorg Med Chem. 2020 Sep 15;28(18):115644. doi: 10.1016/j.bmc.2020.115644. Epub 2020 Jul 17. [PubMed:32828421 ]
- Sporny M, Guez-Haddad J, Lebendiker M, Ulisse V, Volf A, Mim C, Isupov MN, Opatowsky Y: Structural Evidence for an Octameric Ring Arrangement of SARM1. J Mol Biol. 2019 Sep 6;431(19):3591-3605. doi: 10.1016/j.jmb.2019.06.030. Epub 2019 Jul 3. [PubMed:31278906 ]
- Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, Qi T, Gilley J, Lai JS, Rank MX, Casey LW, Gu W, Ericsson DJ, Foley G, Hughes RO, Bosanac T, von Itzstein M, Rathjen JP, Nanson JD, Boden M, Dry IB, Williams SJ, Staskawicz BJ, Coleman MP, Ve T, Dodds PN, Kobe B: NAD(+) cleavage activity by animal and plant TIR domains in cell death pathways. Science. 2019 Aug 23;365(6455):793-799. doi: 10.1126/science.aax1911. [PubMed:31439792 ]
- Jiang Y, Liu T, Lee CH, Chang Q, Yang J, Zhang Z: The NAD(+)-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature. 2020 Dec;588(7839):658-663. doi: 10.1038/s41586-020-2862-z. Epub 2020 Oct 14. [PubMed:33053563 ]
|