Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
HMDB Protein ID HMDBP12412
Secondary Accession Numbers None
Name Toll-like receptor 2
  1. Toll/interleukin-1 receptor-like protein 4
Gene Name TLR2
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Cooperates with LY96 to mediate the innate immune response to bacterial lipoproteins and other microbial cell wall components. Cooperates with TLR1 or TLR6 to mediate the innate immune response to bacterial lipoproteins or lipopeptides (PubMed:21078852, PubMed:17889651). Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. May also activate immune cells and promote apoptosis in response to the lipid moiety of lipoproteins (PubMed:10426995, PubMed:10426996). Recognizes mycoplasmal macrophage-activating lipopeptide-2kD (MALP-2), soluble tuberculosis factor (STF), phenol-soluble modulin (PSM) and B.burgdorferi outer surface protein A lipoprotein (OspA-L) cooperatively with TLR6 (PubMed:11441107). Stimulation of monocytes in vitro with M.tuberculosis PstS1 induces p38 MAPK and ERK1/2 activation primarily via this receptor, but also partially via TLR4 (PubMed:16622205). MAPK activation in response to bacterial peptidoglycan also occurs via this receptor (PubMed:16622205). Acts as a receptor for M.tuberculosis lipoproteins LprA, LprG, LpqH and PstS1, some lipoproteins are dependent on other coreceptors (TLR1, CD14 and/or CD36); the lipoproteins act as agonists to modulate antigen presenting cell functions in response to the pathogen (PubMed:19362712). M.tuberculosis HSP70 (dnaK) but not HSP65 (groEL-2) acts via this protein to stimulate NF-kappa-B expression (PubMed:15809303). Recognizes M.tuberculosis major T-antigen EsxA (ESAT-6) which inhibits downstream MYD88-dependent signaling (shown in mouse) (By similarity). Forms activation clusters composed of several receptors depending on the ligand, these clusters trigger signaling from the cell surface and subsequently are targeted to the Golgi in a lipid-raft dependent pathway. Forms the cluster TLR2:TLR6:CD14:CD36 in response to diacylated lipopeptides and TLR2:TLR1:CD14 in response to triacylated lipopeptides (PubMed:16880211). Required for normal uptake of M.tuberculosis, a process that is inhibited by M.tuberculosis LppM (By similarity).
  • Amoebiasis
  • Chagas disease
  • Coronavirus disease - COVID-19
  • Epstein-Barr virus infection
  • Hepatitis B
  • Herpes simplex virus 1 infection
  • Human immunodeficiency virus 1 infection
  • Inflammatory bowel disease
  • Legionellosis
  • Leishmaniasis
  • Lipid and atherosclerosis
  • Malaria
  • Measles
  • Neutrophil extracellular trap formation
  • PD-L1 expression and PD-1 checkpoint pathway in cancer
  • Phagosome
  • PI3K-Akt signaling pathway
  • Proteoglycans in cancer
  • Rheumatoid arthritis
  • Salmonella infection
  • Toll-like receptor signaling pathway
  • Toxoplasmosis
  • Tuberculosis
Reactions Not Available
GO Classification
Biological Process
signal transduction
positive regulation of chemokine production
cellular response to lipoteichoic acid
cellular response to triacyl bacterial lipopeptide
detection of triacyl bacterial lipopeptide
interleukin-10 production
microglia development
modulation by symbiont of host defense response
response to progesterone stimulus
negative regulation of phagocytosis
negative regulation of synapse assembly
neutrophil degranulation
positive regulation of cellular response to macrophage colony-stimulating factor stimulus
I-kappaB phosphorylation
positive regulation of interleukin-10 production
positive regulation of interleukin-18 production
positive regulation of interleukin-8 production
positive regulation of matrix metallopeptidase secretion
positive regulation of toll-like receptor signaling pathway
toll-like receptor TLR1:TLR2 signaling pathway
apoptotic process
positive regulation of inflammatory response
inflammatory response
positive regulation of interleukin-12 production
response to insulin stimulus
positive regulation of nitric-oxide synthase biosynthetic process
positive regulation of interferon-beta production
central nervous system myelin formation
defense response to Gram-positive bacterium
leukotriene metabolic process
defense response to virus
innate immune response
immune response
positive regulation of transcription from RNA polymerase II promoter
positive regulation of oligodendrocyte differentiation
response to fatty acid
positive regulation of tumor necrosis factor production
toll-like receptor signaling pathway
cell activation
cellular response to bacterial lipopeptide
cellular response to diacyl bacterial lipopeptide
response to toxin
detection of diacyl bacterial lipopeptide
negative regulation of cell proliferation
MyD88-dependent toll-like receptor signaling pathway
microglial cell activation
nitric oxide metabolic process
positive regulation of interleukin-6 production
positive regulation of gene expression
toll-like receptor 2 signaling pathway
positive regulation of NF-kappaB transcription factor activity
toll-like receptor TLR6:TLR2 signaling pathway
response to hypoxia
cellular response to interferon-gamma
positive regulation of NIK/NF-kappaB signaling
positive regulation of Wnt receptor signaling pathway
Cellular Component
cell surface
membrane raft
Toll-like receptor 1-Toll-like receptor 2 protein complex
cell projection
intrinsic component of plasma membrane
plasma membrane
Golgi apparatus
cell body
phagocytic vesicle membrane
secretory granule membrane
integral to plasma membrane
Molecular Function
lipopolysaccharide binding
lipopolysaccharide immune receptor activity
pattern recognition receptor activity
Toll-like receptor binding
triacyl lipopeptide binding
peptidoglycan binding
protein-containing complex binding
beta-amyloid binding
transmembrane signaling receptor activity
NAD(P)+ nucleosidase activity
NAD+ nucleotidase, cyclic ADP-ribose generating
signaling receptor activity
identical protein binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 784
Molecular Weight 89836.575
Theoretical pI 6.608
Pfam Domain Function
  • 1-20;
Transmembrane Regions
  • 589-609;
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID O60603
UniProtKB/Swiss-Prot Entry Name TLR2_HUMAN
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  2. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF: A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):588-93. [PubMed:9435236 ]
  3. Nakajima T, Ohtani H, Satta Y, Uno Y, Akari H, Ishida T, Kimura A: Natural selection in the TLR-related genes in the course of primate evolution. Immunogenetics. 2008 Dec;60(12):727-35. doi: 10.1007/s00251-008-0332-0. Epub 2008 Sep 23. [PubMed:18810425 ]
  4. Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L: Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature. 2000 Nov 2;408(6808):111-5. [PubMed:11081518 ]
  5. Georgel P, Macquin C, Bahram S: The heterogeneous allelic repertoire of human toll-like receptor (TLR) genes. PLoS One. 2009 Nov 17;4(11):e7803. doi: 10.1371/journal.pone.0007803. [PubMed:19924287 ]
  6. Bulut Y, Faure E, Thomas L, Equils O, Arditi M: Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol. 2001 Jul 15;167(2):987-94. doi: 10.4049/jimmunol.167.2.987. [PubMed:11441107 ]
  7. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, Triantafilou K: Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006 Oct 13;281(41):31002-11. doi: 10.1074/jbc.M602794200. Epub 2006 Jul 31. [PubMed:16880211 ]
  8. Ben-Ali M, Corre B, Manry J, Barreiro LB, Quach H, Boniotto M, Pellegrini S, Quintana-Murci L: Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum Mutat. 2011 Jun;32(6):643-52. doi: 10.1002/humu.21486. [PubMed:21618349 ]
  9. Chaudhary PM, Ferguson C, Nguyen V, Nguyen O, Massa HF, Eby M, Jasmin A, Trask BJ, Hood L, Nelson PS: Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood. 1998 Jun 1;91(11):4020-7. [PubMed:9596645 ]
  10. Yang RB, Mark MR, Gray A, Huang A, Xie MH, Zhang M, Goddard A, Wood WI, Gurney AL, Godowski PJ: Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature. 1998 Sep 17;395(6699):284-8. doi: 10.1038/26239. [PubMed:9751057 ]
  11. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL: Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999 Jul 30;285(5428):732-6. doi: 10.1126/science.285.5428.732. [PubMed:10426995 ]
  12. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S: Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol. 2002 Dec 15;169(12):6668-72. doi: 10.4049/jimmunol.169.12.6668. [PubMed:12471095 ]
  13. Weber AN, Morse MA, Gay NJ: Four N-linked glycosylation sites in human toll-like receptor 2 cooperate to direct efficient biosynthesis and secretion. J Biol Chem. 2004 Aug 13;279(33):34589-94. doi: 10.1074/jbc.M403830200. Epub 2004 Jun 1. [PubMed:15173186 ]
  14. Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, Singh M, Arditi M: Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem. 2005 Jun 3;280(22):20961-7. doi: 10.1074/jbc.M411379200. Epub 2005 Apr 4. [PubMed:15809303 ]
  15. Drage MG, Pecora ND, Hise AG, Febbraio M, Silverstein RL, Golenbock DT, Boom WH, Harding CV: TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 2009;258(1):29-37. doi: 10.1016/j.cellimm.2009.03.008. Epub 2009 Apr 11. [PubMed:19362712 ]
  16. Chambers MA, Whelan AO, Spallek R, Singh M, Coddeville B, Guerardel Y, Elass E: Non-acylated Mycobacterium bovis glycoprotein MPB83 binds to TLR1/2 and stimulates production of matrix metalloproteinase 9. Biochem Biophys Res Commun. 2010 Sep 24;400(3):403-8. doi: 10.1016/j.bbrc.2010.08.085. Epub 2010 Aug 26. [PubMed:20800577 ]
  17. Lancioni CL, Li Q, Thomas JJ, Ding X, Thiel B, Drage MG, Pecora ND, Ziady AG, Shank S, Harding CV, Boom WH, Rojas RE: Mycobacterium tuberculosis lipoproteins directly regulate human memory CD4(+) T cell activation via Toll-like receptors 1 and 2. Infect Immun. 2011 Feb;79(2):663-73. doi: 10.1128/IAI.00806-10. Epub 2010 Nov 15. [PubMed:21078852 ]
  18. Yokoyama R, Itoh S, Kamoshida G, Takii T, Fujii S, Tsuji T, Onozaki K: Staphylococcal superantigen-like protein 3 binds to the Toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages. Infect Immun. 2012 Aug;80(8):2816-25. doi: 10.1128/IAI.00399-12. Epub 2012 Jun 4. [PubMed:22665377 ]
  19. Boada-Romero E, Letek M, Fleischer A, Pallauf K, Ramon-Barros C, Pimentel-Muinos FX: TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J. 2013 Feb 20;32(4):566-82. doi: 10.1038/emboj.2013.8. Epub 2013 Feb 1. [PubMed:23376921 ]
  20. Stack J, Doyle SL, Connolly DJ, Reinert LS, O'Keeffe KM, McLoughlin RM, Paludan SR, Bowie AG: TRAM is required for TLR2 endosomal signaling to type I IFN induction. J Immunol. 2014 Dec 15;193(12):6090-102. doi: 10.4049/jimmunol.1401605. Epub 2014 Nov 10. [PubMed:25385819 ]
  21. McKelvey AC, Lear TB, Dunn SR, Evankovich J, Londino JD, Bednash JS, Zhang Y, McVerry BJ, Liu Y, Chen BB: RING finger E3 ligase PPP1R11 regulates TLR2 signaling and innate immunity. Elife. 2016 Nov 2;5. doi: 10.7554/eLife.18496. [PubMed:27805901 ]
  22. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO: Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007 Sep 21;130(6):1071-82. doi: 10.1016/j.cell.2007.09.008. [PubMed:17889651 ]
  23. Kang TJ, Chae GT: Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol. 2001 Jul;31(1):53-8. doi: 10.1111/j.1574-695X.2001.tb01586.x. [PubMed:11476982 ]
  24. Bochud PY, Hawn TR, Aderem A: Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol. 2003 Apr 1;170(7):3451-4. doi: 10.4049/jimmunol.170.7.3451. [PubMed:12646604 ]