Hmdb loader
Survey
Identification
HMDB Protein ID HMDBP12651
Secondary Accession Numbers None
Name Glucan 1,3-beta-glucosidase
Synonyms
  1. Exo-1,3-beta-glucanase
Gene Name XOG1
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Major glucan 1,3-beta-glucosidase required for cell wall integrity. Beta-glucanases participate in the metabolism of beta-glucan, the main structural component of the cell wall. Can also function biosynthetically as a transglycosylase. Functions to deliver glucan from the cell to the extracellular matrix. Does not appear to impact cell wall glucan content of biofilm cells, nor is it necessary for filamentation or biofilm formation. Involved in cell-substrate and cell-cell adhesion. Adhesion to host-cell surfaces is the first critical step during mucosal infection. XOG1 is target of human antimicrobial peptide LL-37 for inhibition of cell adhesion.
Pathways
  • Starch and sucrose metabolism
Reactions Not Available
GO Classification
Biological Process
pathogenesis
fungal-type cell wall organization
cellular glucan metabolic process
glucan catabolic process
cell-substrate adhesion
single-species biofilm formation in or on host organism
single-species biofilm formation on inanimate substrate
Cellular Component
cell surface
extracellular region
cell wall
extracellular vesicle
Molecular Function
transferase activity
beta-glucosidase activity
cell adhesion molecule binding
glucan exo-1,3-beta-glucosidase activity
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 438
Molecular Weight 50055.675
Theoretical pI 5.638
Pfam Domain Function
Signals
  • 1-21;
Transmembrane Regions Not Available
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID P29717
UniProtKB/Swiss-Prot Entry Name EXG1_CANAL
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S: The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7329-34. doi: 10.1073/pnas.0401648101. Epub 2004 May 3. [PubMed:15123810 ]
  2. van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, Hogues H, Cuomo C, Berriman M, Scherer S, Magee BB, Whiteway M, Chibana H, Nantel A, Magee PT: Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol. 2007;8(4):R52. doi: 10.1186/gb-2007-8-4-r52. [PubMed:17419877 ]
  3. Muzzey D, Schwartz K, Weissman JS, Sherlock G: Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol. 2013;14(9):R97. doi: 10.1186/gb-2013-14-9-r97. [PubMed:24025428 ]
  4. Sorgo AG, Heilmann CJ, Dekker HL, Bekker M, Brul S, de Koster CG, de Koning LJ, Klis FM: Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell. 2011 Aug;10(8):1071-81. doi: 10.1128/EC.05011-11. Epub 2011 May 27. [PubMed:21622905 ]
  5. Tsai PW, Yang CY, Chang HT, Lan CY: Characterizing the role of cell-wall beta-1,3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37. PLoS One. 2011;6(6):e21394. doi: 10.1371/journal.pone.0021394. Epub 2011 Jun 21. [PubMed:21713010 ]
  6. Rohm M, Lindemann E, Hiller E, Ermert D, Lemuth K, Trkulja D, Sogukpinar O, Brunner H, Rupp S, Urban CF, Sohn K: A family of secreted pathogenesis-related proteins in Candida albicans. Mol Microbiol. 2013 Jan;87(1):132-51. doi: 10.1111/mmi.12087. Epub 2012 Dec 10. [PubMed:23136884 ]
  7. Chambers RS, Broughton MJ, Cannon RD, Carne A, Emerson GW, Sullivan PA: An exo-beta-(1,3)-glucanase of Candida albicans: purification of the enzyme and molecular cloning of the gene. J Gen Microbiol. 1993 Feb;139(2):325-34. doi: 10.1099/00221287-139-2-325. [PubMed:8436950 ]
  8. Luna-Arias JP, Andaluz E, Ridruejo JC, Olivero I, Larriba G: The major exoglucanase from Candida albicans: a non-glycosylated secretory monomer related to its counterpart from Saccharomyces cerevisiae. Yeast. 1991 Nov;7(8):833-41. doi: 10.1002/yea.320070808. [PubMed:1789004 ]
  9. Mackenzie LF, Brooke GS, Cutfield JF, Sullivan PA, Withers SG: Identification of Glu-330 as the catalytic nucleophile of Candida albicans exo-beta-(1,3)-glucanase. J Biol Chem. 1997 Feb 7;272(6):3161-7. doi: 10.1074/jbc.272.6.3161. [PubMed:9013549 ]
  10. Stubbs HJ, Brasch DJ, Emerson GW, Sullivan PA: Hydrolase and transferase activities of the beta-1,3-exoglucanase of Candida albicans. Eur J Biochem. 1999 Aug;263(3):889-95. doi: 10.1046/j.1432-1327.1999.00581.x. [PubMed:10469155 ]
  11. Brown V, Sexton JA, Johnston M: A glucose sensor in Candida albicans. Eukaryot Cell. 2006 Oct;5(10):1726-37. doi: 10.1128/EC.00186-06. [PubMed:17030998 ]
  12. Maddi A, Bowman SM, Free SJ: Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans. Fungal Genet Biol. 2009 Oct;46(10):768-81. doi: 10.1016/j.fgb.2009.06.005. Epub 2009 Jun 23. [PubMed:19555771 ]
  13. Li X, Du W, Zhao J, Zhang L, Zhu Z, Jiang L: The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans. FEMS Yeast Res. 2010 Jun;10(4):441-51. doi: 10.1111/j.1567-1364.2010.00626.x. Epub 2010 Mar 12. [PubMed:20402792 ]
  14. Hernaez ML, Ximenez-Embun P, Martinez-Gomariz M, Gutierrez-Blazquez MD, Nombela C, Gil C: Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach. J Proteomics. 2010 May 7;73(7):1404-9. doi: 10.1016/j.jprot.2010.02.008. Epub 2010 Feb 16. [PubMed:20167299 ]
  15. Kelly J, Kavanagh K: Proteomic analysis of proteins released from growth-arrested Candida albicans following exposure to caspofungin. Med Mycol. 2010 Jun;48(4):598-605. doi: 10.3109/13693780903405782. [PubMed:20392151 ]
  16. Sorgo AG, Heilmann CJ, Dekker HL, Brul S, de Koster CG, Klis FM: Mass spectrometric analysis of the secretome of Candida albicans. Yeast. 2010 Aug;27(8):661-72. doi: 10.1002/yea.1775. [PubMed:20641015 ]
  17. Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR: A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog. 2012;8(8):e1002848. doi: 10.1371/journal.ppat.1002848. Epub 2012 Aug 2. [PubMed:22876186 ]
  18. Heilmann CJ, Sorgo AG, Mohammadi S, Sosinska GJ, de Koster CG, Brul S, de Koning LJ, Klis FM: Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot Cell. 2013 Feb;12(2):254-64. doi: 10.1128/EC.00278-12. Epub 2012 Dec 14. [PubMed:23243062 ]
  19. Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PC, Sullivan PA, Cutfield JF: The structure of the exo-beta-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J Mol Biol. 1999 Dec 3;294(3):771-83. doi: 10.1006/jmbi.1999.3287. [PubMed:10610795 ]
  20. Patrick WM, Nakatani Y, Cutfield SM, Sharpe ML, Ramsay RJ, Cutfield JF: Carbohydrate binding sites in Candida albicans exo-beta-1,3-glucanase and the role of the Phe-Phe 'clamp' at the active site entrance. FEBS J. 2010 Nov;277(21):4549-61. doi: 10.1111/j.1742-4658.2010.07869.x. Epub 2010 Sep 28. [PubMed:20875088 ]