Hmdb loader
You are using an unsupported browser. Please upgrade your browser to a newer version to get the best experience on Human Metabolome Database.
Identification
HMDB Protein ID HMDBP12695
Secondary Accession Numbers None
Name Stimulator of interferon genes protein
Synonyms
  1. hSTING
  2. Endoplasmic reticulum interferon stimulator
  3. Mediator of IRF3 activation
  4. Transmembrane protein 173
  5. ERIS
  6. hMITA
Gene Name STING1
Protein Type Unknown
Biological Properties
General Function Not Available
Specific Function Facilitator of innate immune signaling that acts as a sensor of cytosolic DNA from bacteria and viruses and promotes the production of type I interferon (IFN-alpha and IFN-beta) (PubMed:18724357, PubMed:18818105, PubMed:19433799, PubMed:19776740, PubMed:23027953, PubMed:23910378, PubMed:23747010, PubMed:30842659). Innate immune response is triggered in response to non-CpG double-stranded DNA from viruses and bacteria delivered to the cytoplasm (PubMed:26300263). Acts by binding cyclic dinucleotides: recognizes and binds cyclic di-GMP (c-di-GMP), a second messenger produced by bacteria, and cyclic GMP-AMP (cGAMP), a messenger produced by CGAS in response to DNA virus in the cytosol (PubMed:21947006, PubMed:23258412, PubMed:23707065, PubMed:23722158, PubMed:26229117, PubMed:23910378, PubMed:23747010, PubMed:30842659). Upon binding of c-di-GMP or cGAMP, STING1 oligomerizes, translocates from the endoplasmic reticulum and is phosphorylated by TBK1 on the pLxIS motif, leading to recruitment and subsequent activation of the transcription factor IRF3 to induce expression of type I interferon and exert a potent anti-viral state (PubMed:22394562, PubMed:25636800, PubMed:30842653). In addition to promote the production of type I interferons, plays a direct role in autophagy (PubMed:30568238, PubMed:30842662). Following cGAMP-binding, STING1 buds from the endoplasmic reticulum into COPII vesicles, which then form the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) (PubMed:30842662). The ERGIC serves as the membrane source for WIPI2 recruitment and LC3 lipidation, leading to formation of autophagosomes that target cytosolic DNA or DNA viruses for degradation by the lysosome (PubMed:30842662). The autophagy- and interferon-inducing activities can be uncoupled and autophagy induction is independent of TBK1 phosphorylation (PubMed:30568238, PubMed:30842662). Autophagy is also triggered upon infection by bacteria: following c-di-GMP-binding, which is produced by live Gram-positive bacteria, promotes reticulophagy (By similarity). Exhibits 2',3' phosphodiester linkage-specific ligand recognition: can bind both 2'-3' linked cGAMP (2'-3'-cGAMP) and 3'-3' linked cGAMP but is preferentially activated by 2'-3' linked cGAMP (PubMed:26300263, PubMed:23910378, PubMed:23747010). The preference for 2'-3'-cGAMP, compared to other linkage isomers is probably due to the ligand itself, whichs adopts an organized free-ligand conformation that resembles the STING1-bound conformation and pays low energy costs in changing into the active conformation (PubMed:26150511). May be involved in translocon function, the translocon possibly being able to influence the induction of type I interferons (PubMed:18724357). May be involved in transduction of apoptotic signals via its association with the major histocompatibility complex class II (MHC-II) (By similarity).(Microbial infection) Antiviral activity is antagonized by oncoproteins, such as papillomavirus (HPV) protein E7 and adenovirus early E1A protein (PubMed:26405230). Such oncoproteins prevent the ability to sense cytosolic DNA (PubMed:26405230).
Pathways
  • Coronavirus disease - COVID-19
  • Cytosolic DNA-sensing pathway
  • Herpes simplex virus 1 infection
  • Human cytomegalovirus infection
  • Human immunodeficiency virus 1 infection
  • NOD-like receptor signaling pathway
  • RIG-I-like receptor signaling pathway
  • Shigellosis
Reactions Not Available
GO Classification
Biological Process
regulation of inflammatory response
neutrophil degranulation
activation of innate immune response
autophagosome assembly
cellular response to exogenous dsRNA
reticulophagy
regulation of type I interferon production
positive regulation of protein binding
positive regulation of macroautophagy
positive regulation of interferon-beta production
cellular response to interferon-beta
protein oligomerization
cellular response to organic cyclic compound
positive regulation of sequence-specific DNA binding transcription factor activity
defense response to virus
innate immune response
positive regulation of defense response to virus by host
viral reproduction
positive regulation of transcription from RNA polymerase II promoter
positive regulation of type I interferon production
Cellular Component
endoplasmic reticulum membrane
cytosol
integral to endoplasmic reticulum membrane
plasma membrane
Golgi apparatus
perinuclear region of cytoplasm
cytoplasmic vesicle membrane
autophagic vacuole membrane
autophagosome
integral component of endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membrane
nucleoplasm
mitochondrial outer membrane
peroxisome
secretory granule membrane
endosome
Molecular Function
protein kinase binding
cyclic-di-GMP binding
cyclic-GMP-AMP binding
ubiquitin protein ligase binding
transcription factor binding
protein homodimerization activity
identical protein binding
Cellular Location Not Available
Gene Properties
Chromosome Location Not Available
Locus Not Available
SNPs Not Available
Gene Sequence Not Available
Protein Properties
Number of Residues 379
Molecular Weight 42192.08
Theoretical pI 7.054
Pfam Domain Function
Signals Not Available
Transmembrane Regions
  • 18-34;45-69;92-106;117-134;
Protein Sequence Not Available
GenBank ID Protein Not Available
UniProtKB/Swiss-Prot ID Q86WV6
UniProtKB/Swiss-Prot Entry Name STING_HUMAN
PDB IDs
GenBank Gene ID Not Available
GeneCard ID Not Available
GenAtlas ID Not Available
HGNC ID Not Available
References
General References
  1. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. Epub 2003 Dec 21. [PubMed:14702039 ]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [PubMed:15489334 ]
  3. Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, Gordon LA, Scott D, Xie G, Huang W, Hellsten U, Tran-Gyamfi M, She X, Prabhakar S, Aerts A, Altherr M, Bajorek E, Black S, Branscomb E, Caoile C, Challacombe JF, Chan YM, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Lopez F, Lou Y, Martinez D, Medina C, Morgan J, Nandkeshwar R, Noonan JP, Pitluck S, Pollard M, Predki P, Priest J, Ramirez L, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wheeler J, Wu K, Yang J, Dickson M, Cheng JF, Eichler EE, Olsen A, Pennacchio LA, Rokhsar DS, Richardson P, Lucas SM, Myers RM, Rubin EM: The DNA sequence and comparative analysis of human chromosome 5. Nature. 2004 Sep 16;431(7006):268-74. [PubMed:15372022 ]
  4. Ishikawa H, Barber GN: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008 Oct 2;455(7213):674-8. doi: 10.1038/nature07317. Epub 2008 Aug 24. [PubMed:18724357 ]
  5. Zhong B, Zhang L, Lei C, Li Y, Mao AP, Yang Y, Wang YY, Zhang XL, Shu HB: The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 2009 Mar 20;30(3):397-407. doi: 10.1016/j.immuni.2009.01.008. Epub 2009 Mar 12. [PubMed:19285439 ]
  6. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [PubMed:24275569 ]
  7. Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, Rompais M, Ayoub D, Lane L, Bairoch A, Van Dorsselaer A, Carapito C: N-terminome analysis of the human mitochondrial proteome. Proteomics. 2015 Jul;15(14):2519-24. doi: 10.1002/pmic.201400617. Epub 2015 Jun 8. [PubMed:25944712 ]
  8. Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 2008 Oct 17;29(4):538-50. doi: 10.1016/j.immuni.2008.09.003. Epub 2008 Sep 25. [PubMed:18818105 ]
  9. Ishikawa H, Ma Z, Barber GN: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009 Oct 8;461(7265):788-92. doi: 10.1038/nature08476. Epub 2009 Sep 23. [PubMed:19776740 ]
  10. Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8653-8. doi: 10.1073/pnas.0900850106. Epub 2009 May 11. [PubMed:19433799 ]
  11. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE: STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011 Sep 25;478(7370):515-8. doi: 10.1038/nature10429. [PubMed:21947006 ]
  12. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V: cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013 Jun 20;498(7454):380-4. doi: 10.1038/nature12306. Epub 2013 May 30. [PubMed:23722158 ]
  13. Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE: Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2',3' cGAMP Signaling. Mol Cell. 2015 Sep 17;59(6):891-903. doi: 10.1016/j.molcel.2015.07.022. Epub 2015 Aug 20. [PubMed:26300263 ]
  14. Zhang H, Han MJ, Tao J, Ye ZY, Du XX, Deng MJ, Zhang XY, Li LF, Jiang ZF, Su XD: Rat and human STINGs profile similarly towards anticancer/antiviral compounds. Sci Rep. 2015 Dec 16;5:18035. doi: 10.1038/srep18035. [PubMed:26669264 ]
  15. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29. [PubMed:25636800 ]
  16. Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y, Mayer A, Dong T, Kaever V, Borrow P, Rehwinkel J: Viruses transfer the antiviral second messenger cGAMP between cells. Science. 2015 Sep 11;349(6253):1228-32. doi: 10.1126/science.aab3632. Epub 2015 Jul 30. [PubMed:26229117 ]
  17. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, Sehgal SA, Wang X, Wang J, Shang Y, Jiang Z, Liu L, Chen Q: STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2019 Sep;26(9):1735-1749. doi: 10.1038/s41418-018-0251-z. Epub 2018 Dec 19. [PubMed:30568238 ]
  18. Wang L, Wen M, Cao X: Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science. 2019 Aug 16;365(6454). pii: science.aav0758. doi: 10.1126/science.aav0758. Epub 2019 Jul 18. [PubMed:31320558 ]
  19. Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, Gaffney BL, Shuman S, Jones RA, Deng L, Hartmann G, Barchet W, Tuschl T, Patel DJ: Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA. Cell. 2013 Aug 15;154(4):748-62. doi: 10.1016/j.cell.2013.07.023. Epub 2013 Aug 1. [PubMed:23910378 ]
  20. Gui X, Yang H, Li T, Tan X, Shi P, Li M, Du F, Chen ZJ: Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature. 2019 Mar;567(7747):262-266. doi: 10.1038/s41586-019-1006-9. Epub 2019 Mar 6. [PubMed:30842662 ]
  21. Li Y, Li C, Xue P, Zhong B, Mao AP, Ran Y, Chen H, Wang YY, Yang F, Shu HB: ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc Natl Acad Sci U S A. 2009 May 12;106(19):7945-50. doi: 10.1073/pnas.0900818106. Epub 2009 Apr 28. [PubMed:19416887 ]
  22. Liu XY, Wei B, Shi HX, Shan YF, Wang C: Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res. 2010 Sep;20(9):994-1011. doi: 10.1038/cr.2010.103. Epub 2010 Jul 13. [PubMed:20628368 ]
  23. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, Kawai T, Akira S: The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity. 2010 Nov 24;33(5):765-76. doi: 10.1016/j.immuni.2010.10.013. Epub 2010 Nov 11. [PubMed:21074459 ]
  24. Orzalli MH, DeLuca NA, Knipe DM: Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):E3008-17. doi: 10.1073/pnas.1211302109. Epub 2012 Oct 1. [PubMed:23027953 ]
  25. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013 May 30;3(5):1355-61. doi: 10.1016/j.celrep.2013.05.009. Epub 2013 May 23. [PubMed:23707065 ]
  26. Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013 Feb 15;339(6121):826-30. doi: 10.1126/science.1229963. Epub 2012 Dec 20. [PubMed:23258412 ]
  27. Zhou Q, Lin H, Wang S, Wang S, Ran Y, Liu Y, Ye W, Xiong X, Zhong B, Shu HB, Wang YY: The ER-associated protein ZDHHC1 is a positive regulator of DNA virus-triggered, MITA/STING-dependent innate immune signaling. Cell Host Microbe. 2014 Oct 8;16(4):450-61. doi: 10.1016/j.chom.2014.09.006. [PubMed:25299331 ]
  28. Li L, Yin Q, Kuss P, Maliga Z, Millan JL, Wu H, Mitchison TJ: Hydrolysis of 2'3'-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol. 2014 Dec;10(12):1043-8. doi: 10.1038/nchembio.1661. Epub 2014 Oct 26. [PubMed:25344812 ]
  29. Lau L, Gray EE, Brunette RL, Stetson DB: DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science. 2015 Oct 30;350(6260):568-71. doi: 10.1126/science.aab3291. Epub 2015 Sep 24. [PubMed:26405230 ]
  30. Dzikiewicz-Krawczyk A, Kok K, Slezak-Prochazka I, Robertus JL, Bruining J, Tayari MM, Rutgers B, de Jong D, Koerts J, Seitz A, Li J, Tillema B, Guikema JE, Nolte IM, Diepstra A, Visser L, Kluiver J, van den Berg A: ZDHHC11 and ZDHHC11B are critical novel components of the oncogenic MYC-miR-150-MYB network in Burkitt lymphoma. Leukemia. 2017 Jun;31(6):1470-1473. doi: 10.1038/leu.2017.94. Epub 2017 Mar 23. [PubMed:28331227 ]
  31. Xing J, Zhang A, Zhang H, Wang J, Li XC, Zeng MS, Zhang Z: TRIM29 promotes DNA virus infections by inhibiting innate immune response. Nat Commun. 2017 Oct 16;8(1):945. doi: 10.1038/s41467-017-00101-w. [PubMed:29038422 ]
  32. Pan S, Liu X, Ma Y, Cao Y, He B: Herpes Simplex Virus 1 gamma134.5 Protein Inhibits STING Activation That Restricts Viral Replication. J Virol. 2018 Sep 26;92(20). pii: JVI.01015-18. doi: 10.1128/JVI.01015-18. Print 2018 Oct 15. [PubMed:30045990 ]
  33. Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ: Structural basis of STING binding with and phosphorylation by TBK1. Nature. 2019 Mar;567(7748):394-398. doi: 10.1038/s41586-019-1000-2. Epub 2019 Mar 6. [PubMed:30842653 ]
  34. Shang J, Xia T, Han QQ, Zhao X, Hu MM, Shu HB, Guo L: Quantitative Proteomics Identified TTC4 as a TBK1 Interactor and a Positive Regulator of SeV-Induced Innate Immunity. Proteomics. 2018 Jan;18(2). doi: 10.1002/pmic.201700403. [PubMed:29251827 ]
  35. Zhang BC, Nandakumar R, Reinert LS, Huang J, Laustsen A, Gao ZL, Sun CL, Jensen SB, Troldborg A, Assil S, Berthelsen MF, Scavenius C, Zhang Y, Windross SJ, Olagnier D, Prabakaran T, Bodda C, Narita R, Cai Y, Zhang CG, Stenmark H, Doucet CM, Noda T, Guo Z, Goldbach-Mansky R, Hartmann R, Chen ZJ, Enghild JJ, Bak RO, Thomsen MK, Paludan SR: STEEP mediates STING ER exit and activation of signaling. Nat Immunol. 2020 Aug;21(8):868-879. doi: 10.1038/s41590-020-0730-5. Epub 2020 Jul 20. [PubMed:32690950 ]
  36. Zhang BC, Nandakumar R, Reinert LS, Huang J, Laustsen A, Gao ZL, Sun CL, Jensen SB, Troldborg A, Assil S, Berthelsen MF, Scavenius C, Zhang Y, Windross SJ, Olagnier D, Prabakaran T, Bodda C, Narita R, Cai Y, Zhang CG, Stenmark H, Doucet CM, Noda T, Guo Z, Goldbach-Mansky R, Hartmann R, Chen ZJ, Enghild JJ, Bak RO, Thomsen MK, Paludan SR: Author Correction: STEEP mediates STING ER exit and activation of signaling. Nat Immunol. 2020 Nov;21(11):1468-1469. doi: 10.1038/s41590-020-0803-5. [PubMed:32929276 ]
  37. Ouyang S, Song X, Wang Y, Ru H, Shaw N, Jiang Y, Niu F, Zhu Y, Qiu W, Parvatiyar K, Li Y, Zhang R, Cheng G, Liu ZJ: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity. 2012 Jun 29;36(6):1073-86. doi: 10.1016/j.immuni.2012.03.019. Epub 2012 May 10. [PubMed:22579474 ]
  38. Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D, Eck MJ, Chen ZJ, Wu H: Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol Cell. 2012 Jun 29;46(6):735-45. doi: 10.1016/j.molcel.2012.05.029. Epub 2012 Jun 14. [PubMed:22705373 ]
  39. Shu C, Yi G, Watts T, Kao CC, Li P: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol. 2012 Jun 24;19(7):722-4. doi: 10.1038/nsmb.2331. [PubMed:22728658 ]
  40. Shang G, Zhu D, Li N, Zhang J, Zhu C, Lu D, Liu C, Yu Q, Zhao Y, Xu S, Gu L: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol. 2012 Jun 24;19(7):725-7. doi: 10.1038/nsmb.2332. [PubMed:22728660 ]
  41. Huang YH, Liu XY, Du XX, Jiang ZF, Su XD: The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat Struct Mol Biol. 2012 Jun 24;19(7):728-30. doi: 10.1038/nsmb.2333. [PubMed:22728659 ]
  42. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, Chen ZJ: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell. 2013 Jul 25;51(2):226-35. doi: 10.1016/j.molcel.2013.05.022. Epub 2013 Jun 6. [PubMed:23747010 ]
  43. Gao P, Zillinger T, Wang W, Ascano M, Dai P, Hartmann G, Tuschl T, Deng L, Barchet W, Patel DJ: Binding-pocket and lid-region substitutions render human STING sensitive to the species-specific drug DMXAA. Cell Rep. 2014 Sep 25;8(6):1668-1676. doi: 10.1016/j.celrep.2014.08.010. Epub 2014 Sep 4. [PubMed:25199835 ]
  44. Shi H, Wu J, Chen ZJ, Chen C: Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):8947-52. doi: 10.1073/pnas.1507317112. Epub 2015 Jul 6. [PubMed:26150511 ]
  45. Zhao B, Shu C, Gao X, Sankaran B, Du F, Shelton CL, Herr AB, Ji JY, Li P: Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins. Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):E3403-12. doi: 10.1073/pnas.1603269113. Epub 2016 Jun 2. [PubMed:27302953 ]
  46. Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X: Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature. 2019 Mar;567(7748):389-393. doi: 10.1038/s41586-019-0998-5. Epub 2019 Mar 6. [PubMed:30842659 ]
  47. Siu T, Altman MD, Baltus GA, Childers M, Ellis JM, Gunaydin H, Hatch H, Ho T, Jewell J, Lacey BM, Lesburg CA, Pan BS, Sauvagnat B, Schroeder GK, Xu S: Discovery of a Novel cGAMP Competitive Ligand of the Inactive Form of STING. ACS Med Chem Lett. 2018 Dec 6;10(1):92-97. doi: 10.1021/acsmedchemlett.8b00466. eCollection 2019 Jan 10. [PubMed:30655953 ]
  48. Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, Goudin N, Fremond ML, Nitschke P, Molina TJ, Blanche S, Picard C, Rice GI, Crow YJ, Manel N, Fischer A, Bader-Meunier B, Rieux-Laucat F: Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest. 2014 Dec;124(12):5516-20. doi: 10.1172/JCI79100. Epub 2014 Nov 17. [PubMed:25401470 ]
  49. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CR, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, St Hilaire C, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R: Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014 Aug 7;371(6):507-518. doi: 10.1056/NEJMoa1312625. Epub 2014 Jul 16. [PubMed:25029335 ]
  50. Konno H, Chinn IK, Hong D, Orange JS, Lupski JR, Mendoza A, Pedroza LA, Barber GN: Pro-inflammation Associated with a Gain-of-Function Mutation (R284S) in the Innate Immune Sensor STING. Cell Rep. 2018 Apr 24;23(4):1112-1123. doi: 10.1016/j.celrep.2018.03.115. [PubMed:29694889 ]